之前我们成功将EasyGBS、EasyDSS等平台的运行情况实时监测功能实现了,但由于前期配置并没有考虑到监控多个EasyDSS、多个EasyGBS,而目之前每个产品只能监控一个,对于多个平台同时监控的需求就无法实现了...我们目前采用的优化方式是将json配置文件中嵌入结构数组,再使用Go语言读取json结构数组并解析出来,这样配置多个产品信息也可达到实时监测的目的。...如果大家对我们不同平台的方案感兴趣,也可以根据自己的项目需求来寻找方案,或者联系我们。...在二次开发方面,TSINGSEE青犀视频平台也具备丰富的开发接口,可以很简单的进行二次开发和应用,亦可将EasyDSS流媒体服务器软件与其他第三方平台对接,组合灵活自由,欢迎大家了解。
当有多个fq文件要进行数据质量检测时,我们可通过建立一个脚本执行文件,执行该脚本,可同时批量对fq文件进行检测。...output_reverse_unpaired.fq.gz output_forward_unpaired.fq.gz 4.之后可通过WinSCP或MobalXterm,下载到 windows,打开fastqc.html进行浏览
绘制思维导图时,分类是最重要的,其需要满足MECE(相互独立,完全穷尽),而且需要逻辑自洽,否则就会导致结构不清晰,部分信息分类不明确 为什么要做分类?...因为人脑擅长记忆和处理结构化的信息 如何分类?...是对选定的项目、工序或操作,都要从What, Who, Where, When, Why, How, How much, Effect等六个方面提出问题进行思考。...PDCA:PDCA是英语单词Plan(计划)、Do(执行)、Check(检查)和Act(处理)的第一个字母,PDCA循环就是按照这样的顺序进行质量管理,并且循环不止地进行下去的科学程序。...)这四大类影响企业的主要外部环境因素进行分析。
比如一个数据表可能会有十几到几十列之多,为了更好的看清某些重要的列,我们可以对表进行如下操作—— 对列进行高亮颜色操作 原始表中包含多个列,如果我只想看一下利润这一列有什么规律,眼睛会在上下扫视的过程中很快迷失...对利润这一列进行颜色高亮 把一列修改成指定颜色这个操作在 Excel 中只需要两步:①选择一列 ②修改字体颜色 ,仅 2秒钟就能完成。...第2次尝试:选中要高亮的列并点击右键,选择 Format 后尝试对列进行颜色填充,寄希望于使用类似 Excel 中的方式完成。...不过这部分跟 Excel 中的操作完全不一样,我尝试对每一个能改颜色的地方都进行了操作,没有一个能实现目标。 ?...自问自答:因为交叉表是以行和列的形式展示的,其中SUM(利润)相当于基于客户名称(行的维度)对其利润进行求和,故对SUM(利润)加颜色相当于通过颜色显示不同行中数字所在的区间。
MySQL GROUP BY 语句 GROUP BY 语句根据一个或多个列对结果集进行分组。 在分组的列上我们可以使用 COUNT, SUM, AVG,等函数。...+----+--------+---------------------+--------+ 6 rows in set (0.00 sec) 接下来我们使用 GROUP BY 语句 将数据表按名字进行分组...2 | +--------+----------+ 3 rows in set (0.01 sec) 使用 WITH ROLLUP WITH ROLLUP 可以实现在分组统计数据基础上再进行相同的统计...例如我们将以上的数据表按名字进行分组,再统计每个人登录的次数: mysql> SELECT name, SUM(singin) as singin_count FROM employee_tbl GROUP
我需要对值进行 url 编码,以确保特殊字符得到正确处理。最好的方法是什么? 这是我到目前为止的基本脚本: #!/bin/bash host=${1:?'...将脚本保存为 curl-test.sh 文件,在一个窗口使用 tcpdump 对上网的网口开启过滤抓包,在另一个窗口执行命令 bash curl-test.sh example.com "ABC efg" 进行测试...,抓包截图如下: 可以发现参数 "ABC efg" 被编码成为 ABC%20efg,即字符空格被编码为 %20。...等特殊字符都有其对应的 URL 编码。 参考文档: stackoverflow question 296536 https://manpages.org/curl
Python如何对多个sheet表进行整合 说明 1、xlwt模块是非追加写入.xls模块,所以要一次性写入for循环和列表,这样就没有追加和非追加的说法。...2、将Excel表合并,将每一个Excel表作为行,即行合并,换个想法,将Excel表中的标签作为列,可以进行列合并,即将不同文件中相同标签组成的不同标签合并,可以先将不同文件中相同的标签合并,不同文件中相同的标签组成一个列表...] k=[] #通过for循环得到所有Excel文件的标签数,且以列表的形式返回 for i in a: fo=open(i) k.append(len(fo.sheets())) #对这些标签数进行升序排序...)函数为xlwt自带函数,将合并好的Excel文件保存到某个路径下 fw.save(b) #xlrd模块和xlwt模块都没有close()函数,即用这两个模块打开文件不用关闭文件 以上就是Python对多个...sheet表进行整合的方法,希望对大家有所帮助。
今日锦囊 特征锦囊:如何对类别变量进行独热编码?...很多时候我们需要对类别变量进行独热编码,然后才可以作为入参给模型使用,独热的方式有很多种,这里介绍一个常用的方法 get_dummies吧,这个方法可以让类别变量按照枚举值生成N个(N为枚举值数量)新字段...我们还是用到我们的泰坦尼克号的数据集,同时使用我们上次锦囊分享的知识,对数据进行预处理操作,见下: # 导入相关库 import pandas as pd import numpy as np from...那么接下来我们对字段Title进行独热编码,这里使用get_dummies,生成N个0-1新字段: # 我们对字段Title进行独热编码,这里使用get_dummies,生成N个0-1新字段 dummies_title...对了,这里有些同学可能会问,还有一种独热编码出来的是N-1个字段的又是什么?
事实上将照片进行分类,就可以将其当做机器学习中的分类任务,需要开发一个分类器,Yelp首先需要做的就是收集训练数据,在图片分类任务中就是收集很多标签已知的照片。...照片属性:当上传照片到Yelp上时,用户允许标记照片的一些属性,虽然它们并不总是准确的,但仍然可以很有效地帮助照片分类。 众包:通过众包可以让大众自动参与照片的标注,并同时纠正一些错误的标注。...CNNs是由多个卷积层组成,ReLU层、pooling层、局部响应正则化层和全连接层。Yelp的CNN被建立在基于Caffe架构的AWS EC2 GPU实例上。...Yelp还创建了抽象,以确保Yelp的CNN可以很容易地与其他形式的分类器进行集成,包括CNN的不同实例。...扫描在计算上消耗很大,但通过将分类器在任意多的机器上进行并行处理,Yelp可以减轻这一点。扫描结束后,Yelp会每天自动收集新的照片,并将它们发送到一个进行分类和数据库负载的批次中: ?
最简单的自编码器就是通过一个encoder和decoder来对输入进行复现,例如我们将一个图片输入到一个网络中,自编码器的encoder对图片进行压缩,得到压缩后的信息,进而decoder再将这个信息进行解码从而复现原图...本篇文章将实现两个Demo,第一部分即实现一个简单的input-hidden-output结的自编码器,第二部分将在第一部分的基础上实现卷积自编码器来对图片进行降噪。...第二部分 在了解了上面AutoEncoder工作原理的基础上,我们在这一部分将对AutoEncoder加入多个卷积层来进行图片的降噪处理。...构造噪声数据 通过上面的步骤我们就构造完了整个卷积自编码器模型。由于我们想通过这个模型对图片进行降噪,因此在训练之前我们还需要在原始数据的基础上构造一下我们的噪声数据。 ?...结果可视化 经过上面漫长的训练,我们的模型终于训练好了,接下来我们就通过可视化来看一看模型的效果如何。 ?
针对每一个行生成的列表进行排序 函数:List.Transform,List.Sort 3. 把排序后的列表转换成表格 函数:Table.FromRows (二) 批量针对每一列排序 1....把每一列转成列表 函数:Table.ToColumns 2. 针对每一个列生成的列表进行排序 函数:List.Transform,List.Sort 3.
前言 图片如何转换为Base64?...所以这边我们不使用StringUtil或Oracle的sun包来对图片和Base64编码操作。 核心代码 首先,我们自己写一个Base64Util类,并提供静态方法:encode、decode。...图片转Base64 public static String encodeImgageToBase64(File imageFile) { // 将图片文件转化为字节数组字符串,并对其进行...Base64编码处理 // 其进行Base64编码处理 byte[] data = null; // 读取图片字节数组 try {...) { //对字节数组字符串进行Base64解码并生成图片 if (imageBase64 == null) //图像数据为空 return false
大部分时候,我一直都是用公开数据集,对激光雷达(LiDAR)数据进行分类识别。...过去几个月我的大部分工作,就是想办法让Voyage的自动驾驶出租车对车辆和行人进行分类。 我使用的工具是三维视图(LiDAR点云)+深度学习。...在Vispy的帮助下,我对大量的点云进行了有序的可视化,然后在类似真实世界的环境中对模型进行调试。我这次实习的另一个收获是,直接从模型的损失曲线中很难看出问题。...我搭建的模型之一,是一个编码解码器(Encoder-Decoder)网络,能够对多个通道的输入数据进行分类预测。从这些嘈杂的预测中,我们可以推断出面前物体的真实类别。...例如,依靠对象大小和形状进行分类的模型很容易出现检测错误。而编码解码器模型可以通过识别场景中的模式并直接转变为预测来回避这样的问题。 △ 工作中的编码器-解码器模型。模型还很粗糙。
今天我要分享的是5万多个Shopify平台子域名劫持漏洞的发现过程。首先,我要说明的是,该漏洞不仅只存在于Shopify平台系统,还存在其它几个云服务平台系统中。...那接下来,如何来确定是否真的存在漏洞呢?...以下是对shop.buckhacker.com的nslookup信息: ?...那如何知道某个商店名称是否被注册认领(claim)了呢?...大规模测试发现 在之前的文章中,我们介绍过使用Rapid7的Sonar和FDNS数据集工具可以很方便地进行一些漏洞测试利用。 ?
AiTechYun 编辑:nanan 学习识别和分类对象是一种基本的认知技能,可以让动物在世界上发挥作用。例如,将另一种动物识别为朋友或敌人,可以决定如何与之互动。...因此,在噪声和退化条件下进行分类研究是必要的。 ? 大脑是如何在退化的条件下处理分类刺激物的?...为了解开这两个可能性,研究人员在Purdue MRI设施中进行扫描,同时对具有不同透明度水平的面具覆盖的新颖抽象刺激物进行分类。...通过对SVM学习模式的分析,发现后视区V1、V2、V3和V4在不同的观测条件下是最重要的。这一结果得到了关注特定脑区的兴趣区域(ROI)分析的进一步支持。...相比之下,通常与刺激物分类相关的纹状体、PFC和HC,无法识别刺激物恶化的水平。
选取多个DataFrame列 # 用列表选取多个列 In[2]: movie = pd.read_csv('data/movie.csv') movie_actor_director...对列名进行排序 # 读取movie数据集 In[12]: movie = pd.read_csv('data/movie.csv') In[13]: movie.head() Out[13]: ?...duration 15 director_facebook_likes 102 dtype: int64 # 对这个...# 现在都是均质数据了,可以进行数值运算 In[41]: college_ugds_.head() + .00501 Out[41]: ?...# 对所有True值求和 In[77]: diversity_metric = college_ugds_.ge(.15).sum(axis='columns') diversity_metric.head
同时这些值一般可以用数值来表示。但是,与其他数值变量不一样的是,类别特征的数值变量无法与其他数值变量进行比较大小。(作为行业类型,石油与旅行无法进行比较)它们被称之为非序的。...我们用分类变量的共同表示开始讨论,并且最终蜿蜒曲折地讨论了大范围的bin-counting问题变量,这在现代数据集中非常普遍。 对类别特征进行编码 分类变量的类别通常不是数字。...虚拟编码和单热编码都是在Pandas中以pandas.get_dummies的形式实现的。 表5-2 对3个城市的类别进行dummy编码 ? 使用虚拟编码进行建模的结果比单编码更易解释。...其中每一个都是一个非常大的分类变量。 我们面临的挑战是如何找到一个能够提高内存效率的优秀特征表示,并生成训练速度快的准确模型。 对于这种类别特征处理的方案有: 对编码不做任何事情。...但该技术很容易应用于一般的二元分类。 它也可以使用通常的技术容易地扩展到多级分类将二元分类器扩展到多个类,即通过一对多优势比或其他多类标签编码。
例如,如果用一个序列来表示美国的各个州,那么 one-hot 编码会带来 50 多个维度。...这会导致结果异常稀疏,使其难以进行优化,对于神经网络来说尤其如此。 更糟糕的是,每个信息稀疏列之间都具有线性关系。...目标编码 目标编码(Target encoding)是表示分类列的一种非常有效的方法,并且仅占用一个特征空间,也称为均值编码。该列中的每个值都被该类别的平均目标值替代。...首先,它使模型更难学习均值编码变量和另一个变量之间的关系,仅基于列与目标的关系就在列中绘制相似性。 而最主要的是,这种编码方法对 y 变量非常敏感,这会影响模型提取编码信息的能力。...由于目标编码器是一种有监督方法,所以它同时需要 X 和 y 训练集。
领取专属 10元无门槛券
手把手带您无忧上云