首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何合并两个数据帧并保留其中的非-nan值

合并两个数据帧并保留其中的非-nan值可以使用pandas库中的merge函数或concat函数。

  1. 使用merge函数合并数据帧: merge函数可以根据指定的列将两个数据帧进行合并,并保留其中的非-nan值。具体步骤如下:
    • 导入pandas库:import pandas as pd
    • 定义两个数据帧df1和df2
    • 使用merge函数进行合并:merged_df = pd.merge(df1, df2, on='列名', how='inner')
      • on参数指定用于合并的列名
      • how参数指定合并方式,inner表示取交集,即只保留两个数据帧中都存在的行
    • 合并后的结果保存在merged_df中
    • 示例代码:
    • 示例代码:
    • 输出结果:
    • 输出结果:
    • 推荐的腾讯云相关产品:腾讯云数据库TencentDB、腾讯云数据万象COS、腾讯云分布式数据库TDSQL等。详细介绍请参考腾讯云官网文档。
  • 使用concat函数合并数据帧: concat函数可以将两个数据帧按照行或列的方向进行合并,并保留其中的非-nan值。具体步骤如下:
    • 导入pandas库:import pandas as pd
    • 定义两个数据帧df1和df2
    • 使用concat函数进行合并:merged_df = pd.concat([df1, df2], axis=0, join='inner')
      • axis参数指定合并的方向,0表示按行合并,1表示按列合并
      • join参数指定合并方式,inner表示取交集,即只保留两个数据帧中都存在的列
    • 合并后的结果保存在merged_df中
    • 示例代码:
    • 示例代码:
    • 输出结果:
    • 输出结果:
    • 推荐的腾讯云相关产品:腾讯云数据库TencentDB、腾讯云数据万象COS、腾讯云分布式数据库TDSQL等。详细介绍请参考腾讯云官网文档。
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

直观地解释和可视化每个复杂的DataFrame操作

操作数据帧可能很快会成为一项复杂的任务,因此在Pandas中的八种技术中均提供了说明,可视化,代码和技巧来记住如何做。 ?...诸如字符串或数字之类的非列表项不受影响,空列表是NaN值(您可以使用.dropna()清除它们 )。 ? 在DataFrame df中Explode列“ A ” 非常简单: ?...为了合并两个DataFrame df1 和 df2 (其中 df1 包含 leftkey, 而 df2 包含 rightkey),请调用: ?...记住:合并数据帧就像在水平行驶时合并车道一样。想象一下,每一列都是高速公路上的一条车道。为了合并,它们必须水平合并。...“inner”:仅包含元件的键是存在于两个数据帧键(交集)。默认合并。 记住:如果您使用过SQL,则单词“ join”应立即与按列添加相联系。

13.3K20

数据科学 IPython 笔记本 7.6 Pandas 中的数据操作

这意味着,保留数据的上下文并组合来自不同来源的数据 - 这两个在原始的 NumPy 数组中可能容易出错的任务 - 对于 Pandas 来说基本上是万无一失的。...', 'Texas'], dtype='object') 任何没有条目的项目都标为NaN(非数字),这就是 Pandas 标记缺失数据的方式(请在“处理缺失数据”中参阅缺失数据的进一步讨论)。...1 13.0 6.0 NaN 2 NaN NaN NaN 请注意,索引是正确对齐的,无论它们在两个对象中的顺序如何,并且结果中的索引都是有序的。...(参见“数据计算:广播”),二维数组与其中一行之间的减法是逐行应用的。...halfrow Q R S T 0 0.0 NaN 0.0 NaN 1 -1.0 NaN 2.0 NaN 2 3.0 NaN 1.0 NaN 索引和列的保留和对齐意味着,Pandas 中的数据操作将始终维护数据上下文

2.8K10
  • Pandas学习笔记02-数据合并

    指定keys值数据合并 以上我们可以看到,设定keys值后,合并后的数据多了一层索引,我们可以直接通过这一层索引选择整块数据: In [10]: result.loc['y'] Out[11]:...默认情况下,join='outer',合并时索引全部保留,对于不存在值的部分会默认赋NaN。...按列合并 对于按照列合并数据时,如果我们希望只保留第一份数据下的索引,可以通过如下两种方式实现: #①合并后只取第一份数据的索引 In [14]: pd.concat([df1, df4], axis=...字典数据追加到数据帧 2.merge merge可根据一个或多个键(列)相关同DataFrame中的拼接起来。...NaN 2.0 right_only 2.4.left_on和right_on 当我们想合并的两个数据出现没有公共列名的情况,可以用left_on和right_on分别指定左右两侧数据用于匹配的列

    3.8K50

    全新池化方法AdaPool | 让ResNet、DenseNet、ResNeXt等在所有下游任务轻松涨点

    然后,评估AdaUnPool在图像和视频帧的超分辨率和帧插值任务。为了进行基准测试,作者提出了Inter4K,这是一种新颖的高质量、高帧率视频数据集。...AdaPool保持了较低的计算成本,并提供了一种保留先验信息的方法。作者进一步介绍AdaUnPool并解决超分辨率和插值任务。...还展示了AdaUnPool在图像和视频超分辨率和视频帧插值方面的性能提升; 介绍了一个高分辨率和帧速率视频处理数据集Inter4K,用于对帧超分辨率和插值算法进行基准测试。...而本文的工作不是结合现有的方法,而是基于一种自适应指数加权方法来提高信息的保留,并更好地保留原始信号的细节。本文提出的方法AdaPool是受到 的启发。...但是,特别是对于广泛使用的余弦相似度面临的问题是,即使其中一个向量是无限大的两个向量之间的相似度也可以是1。

    1.9K10

    python数据分析——数据的选择和运算

    True表示按连结主键(on 对应的列名)进行升序排列。 【例】创建两个不同的数据帧,并使用merge()对其执行合并操作。 关键技术:merge()函数 首先创建两个DataFrame对象。...关键技术:使用’ id’键合并两个数据帧,并使用merge()对其执行合并操作。...代码和输出结果如下所示: (2)使用多个键合并两个数据帧: 关键技术:使用’ id’键及’subject_id’键合并两个数据帧,并使用merge()对其执行合并操作。...【例】对于存储在本地的销售数据集"sales.csv" ,使用Python将两个数据表切片数据进行合并 关键技术:注意未选择数据的属性用NaN填充。...进行非空值计数,此时应该如何处理?

    19310

    Python 数据科学入门教程:Pandas

    在这里,我们已经介绍了 Pandas 中的连接(concat)和附加数据帧。 接下来,我们将讨论如何连接(join)和合并数据帧。...all需要该行中的所有数据为NaN,才能将其删除。 你也可以选择any,然后设置一个阈值。 该阈值将要求存在许多非na值,才能接受该行。 更多信息,请参阅dropna的Pandas文档。...把它看作是一个扫描动作,其中你可以从过去获取数据,将其转移到缺失的数据中。 任何缺失数据的情况都会以最近的非缺失数据填入。...在本教程中,我们将讨论各种滚动统计量在我们的数据帧中的应用。 其中较受欢迎的滚动统计量是移动均值。这需要一个移动的时间窗口,并计算该时间段的均值作为当前值。在我们的情况下,我们有月度数据。...现在,我们可以遍历并删除所有标准差高于这个值的数据。 这使我们能够学习一项新技能:在逻辑上修改数据帧!

    9.1K10

    除法运算符

    下表列出了非零有限值、零、无穷大和 NaN 的所有可能组合的结果。在表中,x和y是正的有限值。z是 的结果x / y。如果结果对于目标类型来说太大,z则为无穷大。...如果x或的项目y包含错误,则不会传播错误。 连接两个文本值的结果是一个文本值,其中包含紧跟其后的 x 值。如果其中一个操作数为空而另一个为文本值,则结果为空。...连接两个列表的结果是一个列表,其中包含 的所有项,x后跟 的所有项y。 连接两个表的结果是一个表,该表具有两个操作数表的列的并集。的列顺序x被保留,然后是只出现在 中的列y,保留它们的相对顺序。...日期时间合并 一个日期x可以与时间合并y使用x & y,产生组合来自两个部件中的日期时间x和y。...y,并返回false如果满足冲高类型x是不兼容的y。

    1.9K30

    精通 Pandas:1~5

    默认行为是为未对齐的序列结构生成索引的并集。 这是可取的,因为信息可以保留而不是丢失。 在本书的下一章中,我们将处理 Pandas 中缺失的值。 数据帧 数据帧是一个二维标签数组。...类似于 SQL 的数据帧对象的合并/连接 merge函数用于获取两个数据帧对象的连接,类似于 SQL 数据库查询中使用的那些连接。数据帧对象类似于 SQL 表。...由于并非所有列都存在于两个数据帧中,因此对于不属于交集的数据帧中的每一行,来自另一个数据帧的列均为NaN。...有关 SQL 连接如何工作的简单说明,请参考这里。 join函数 DataFrame.join函数用于合并两个具有不同列且没有共同点的数据帧。 本质上,这是两个数据帧的纵向连接。...其余的非 ID 列可被视为变量,并可进行透视设置并成为名称-值两列方案的一部分。 ID 列唯一标识数据帧中的一行。

    19.2K10

    合并Pandas的DataFrame方法汇总

    ---- Pandas是数据分析、机器学习等常用的工具,其中的DataFrame又是最常用的数据类型,对它的操作,不得不熟练。...在《跟老齐学Python:数据分析》一书中,对DataFrame对象的各种常用操作都有详细介绍。本文根据书中介绍的内容,并参考其他文献,专门汇总了合并操作的各种方法。...这两个参数是我们要合并的DataFrames的名称。...因此,如果其中一个表中缺少user_id ,它就不会在合并的DataFrame中。 即使交换了左右行的位置,结果仍然如此。...这样,就要保留第一个DataFrame中的所有非缺失值,同时用第二个DataFrame可用的非缺失值(如果有这样的非缺失值)替换第一个DataFrame中的所有NaN。

    5.7K10

    pandas系列4_合并和连接

    concat函数 直接将值和索引粘合在一起,默认是在axis=0上面工作,得到的是新的Series;改成axis=1,变成一个DF型数据 axis axis=0:默认是Series axis=1:得到...DF数据,缺值用NaN补充 join outer:合并,缺值用nan inner:求交集,非交集部分直接删除 keys:用于层次化索引 ignore_index:不保留连接轴上的索引,产生新的索引 官方文档...join操作 ,就是数据库风格的合并 常用参数表格 参数 说明 left 参与合并的左侧DF right 参与合并的右侧DF how 默认是inner,inner、outer、right、left on...DF有相同的列属性怎么处理 如果不指定on参数,自动按照重叠的列名进行合并 最好指定key: pd.merge(df1, df2, on='key') # 将两个df数据中相同的值进行合并 pd.merge...,参数表格 选项 说明 inner 两个表中公有的键 outer 两个表中所有的键,不存在的值用NaN补足 left 左表中所有的键 right 右表中所有的键 交集:how=inner,默认取值,内连接

    78710

    pandas合并和连接多个数据框

    NaN -1.824889 -0.687067 0.012370 观察上述的结果可以发现,合并数据框时,对于不同shape的数据框,尽管行标签和列标签有重复值,但是都是当做独立元素来处理,直接取了并集...合并数据框时,沿着axis参数指定的轴进行合并,而join参数则控制在另外一个轴上,标签如何处理,默认的outer表示取并集,取值为inner时,取交集,只保留overlap的标签,示例如下 >>> pd.concat...,来合并两个数据框。...key, 然后比较两个数据框中key列对应的元素,取交集的元素作为合并的对象。...NaN -1.061909 -0.135067 -0.710007 4. append append将两个数据框以行的方式进行合并,要求列数相同,用法如下 # append 函数,将新的数据框追加为行

    1.9K20

    【数据分析】数据缺失影响模型效果?是时候需要missingno工具包来帮你了!

    如果丢失的数据是由数据帧中的非NaN表示的,那么应该使用np.NaN将其转换为NaN,如下所示。...这将返回一个表,其中包含有关数据帧的汇总统计信息,例如平均值、最大值和最小值。在表的顶部是一个名为counts的行。在下面的示例中,我们可以看到数据帧中的每个特性都有不同的计数。...这提供了并非所有值都存在的初始指示。 我们可以进一步使用.info()方法。这将返回数据帧的摘要以及非空值的计数。 从上面的例子中我们可以看出,我们对数据的状态和数据丢失的程度有了更简明的总结。...条形图 条形图提供了一个简单的绘图,其中每个条形图表示数据帧中的一列。条形图的高度表示该列的完整程度,即存在多少个非空值。...这可以通过使用missingno库和一系列可视化来实现,以了解有多少缺失数据存在、发生在哪里,以及不同数据列之间缺失值的发生是如何关联的。

    4.8K30

    数据城堡参赛代码实战篇(四)---使用pandas合并数据表

    ]}) print (df) 输出如下: id value 0 1 5 1 1 10 2 2 12 可以看到,有两个id为1的数据行,如果我们只想保留最后一条...: id value 1 1 10 2 2 12 2 使用pandas合并数据 根据官方给出的数据,我们分别提取了消费数据、图书馆进出数据、图书借阅数据的特征,并分别写入了不同的...那么我们如何将这一系列数据文件合并成一个文件呢?pandas提供了多种对数据进行合并的方法,不过本文主要介绍的是merge()方法的应用。...7 NaN d 2.0 可以看到,全外连接取的是两个DataFrame的键的并集,如果一个键只在其中一个DataFrame中出现,则结果中会用NaN来补足数据。...例如,只有df1中有key值为‘c’的数据,则合并结果中data2列使用NaN来补足数据。

    1.8K60

    Pandas知识点-合并操作combine

    combine_first()方法根据DataFrame的行索引和列索引,对比两个DataFrame中相同位置的数据,优先取非空的数据进行合并。...如果调用combine_first()方法的df1中数据非空,则结果保留df1中的数据,如果df1中的数据为空值且传入combine_first()方法的df2中数据非空,则结果取df2中的数据,如果df1...和df2中的数据都为空值,则结果保留df1中的空值(空值有三种: np.nan、None 和 pd.NaT)。...fmax()是numpy中实现的函数,用于比较两个数组,返回一个新的数组。返回两个数组中相同索引的最大值,如果其中一个数组的值为空则返回非空的值,如果两个数组的值都为空则返回第一个数组的空值。...自定义一个函数first_not_na()在合并时优先取非空的数据,这个函数实现的功能与combine_first(other)方法相同。 四合并时填充空值 ---- ?

    2K10

    熟练掌握 Pandas 合并术,数据处理不再伤脑筋

    ,即需要合并的数据对象 axis: 指定合并的轴向,axis=0 是纵向合并(增加行数), axis=1 是横向合并(增加列数) join: 连接方式,有 inner (相交部分)和 outer (并集部分...) ignore_index: 设置为 True 时,合并后的数据索引将重新排序 keys: 用于构造合并后层次化的索引,可以给每个数据源命名 纵向合并两个DataFrame,设置 axis=0 import...join='outer'表示取两个 DataFrame 的行列索引的并集进行拼接,缺失值为NaN import pandas as pd df1 = pd.DataFrame({'A': [1, 2]...NaN 2 2.0 4.0 5.0 7.0 3 NaN NaN 6.0 8.0 可以看到,最终结果保留了两个 DataFrame 行索引的并集,缺失值用 NaN 填充。...一般来说,如果希望保留两个数据源中所有数据就用 outer ,如果只需要保留两者公共部分就用 inner 。

    44700

    更高效的利用Jupyter+pandas进行数据分析,6种常用数据格式效率对比!

    然而当数据集的维度或者体积很大时,将数据保存并加载回内存的过程就会变慢,并且每次启动Jupyter Notebook时都需要等待一段时间直到数据重新加载, 这样csv格式或任何其他纯文本格式数据都失去了吸引力...本文将对pandas支持的多种格式数据在处理数据的不同方面进行比较,包含I/O速度、内存消耗、磁盘占用空间等指标,试图找出如何为我们的数据找到一个合适的格式的办法!...size_mb:带有序列化数据帧的文件的大小 save_time:将数据帧保存到磁盘所需的时间 load_time:将先前转储的数据帧加载到内存所需的时间 save_ram_delta_mb:在数据帧保存过程中最大的内存消耗增长...load_ram_delta_mb:数据帧加载过程中最大的内存消耗增长 注意,当我们使用有效压缩的二进制数据格式(例如Parquet)时,最后两个指标变得非常重要。...将五个随机生成的具有百万个观测值的数据集转储到CSV中,然后读回内存以获取平均指标。并且针对具有相同行数的20个随机生成的数据集测试了每种二进制格式。

    2.9K21

    更高效的利用Jupyter+pandas进行数据分析,6种常用数据格式效率对比!

    然而当数据集的维度或者体积很大时,将数据保存并加载回内存的过程就会变慢,并且每次启动Jupyter Notebook时都需要等待一段时间直到数据重新加载, 这样csv格式或任何其他纯文本格式数据都失去了吸引力...本文将对pandas支持的多种格式数据在处理数据的不同方面进行比较,包含I/O速度、内存消耗、磁盘占用空间等指标,试图找出如何为我们的数据找到一个合适的格式的办法!...size_mb:带有序列化数据帧的文件的大小 save_time:将数据帧保存到磁盘所需的时间 load_time:将先前转储的数据帧加载到内存所需的时间 save_ram_delta_mb:在数据帧保存过程中最大的内存消耗增长...load_ram_delta_mb:数据帧加载过程中最大的内存消耗增长 注意,当我们使用有效压缩的二进制数据格式(例如Parquet)时,最后两个指标变得非常重要。...将五个随机生成的具有百万个观测值的数据集转储到CSV中,然后读回内存以获取平均指标。并且针对具有相同行数的20个随机生成的数据集测试了每种二进制格式。

    2.4K30

    panda python_12个很棒的Pandas和NumPy函数,让分析事半功倍

    这使NumPy能够无缝且高速地与各种数据库进行集成。  1. allclose()  Allclose() 用于匹配两个数组并且以布尔值形式输出。如果两个数组的项在公差范围内不相等,则返回False。...array([1, 8, 2, 0], dtype=int64)np.sort(x[index_val])  array([10, 12, 12, 16])  3. clip()  Clip() 用于将值保留在间隔的数组中...以下是Pandas的优势:  轻松处理浮点数据和非浮点数据中的缺失数据(表示为NaN)  大小可变性:可以从DataFrame和更高维的对象中插入和删除列  自动和显式的数据对齐:在计算中,可以将对象显式对齐到一组标签...,或者用户可以直接忽略标签,并让Series,DataFrame等自动对齐数据  强大灵活的分组功能,可对数据集执行拆分-应用-合并操作,以汇总和转换数据  轻松将其他Python和NumPy数据结构中的不规则的...将数据帧分配给另一个数据帧时,在另一个数据帧中进行更改,其值也会进行同步更改。为了避免出现上述问题,可以使用copy()函数。

    5.1K00

    数据导入与预处理-课程总结-04~06章

    how:表示删除缺失值的方式。 thresh:表示保留至少有N个非NaN值的行或列。 subset:表示删除指定列的缺失值。 inplace:表示是否操作原数据。...个非NaN值的行 na_df.dropna(thresh=3) # 缺失值补全|整体填充 将全部缺失值替换为 * na_df.fillna("*") 2.3 重复值处理 2.3.1 重复值的检测 pandas...keep:表示采用哪种方式保留重复项,该参数可以取值为’first’(默认值)、 'last '和 ‘False’,其中’first’代表删除重复项,仅保留第一次出现的数据项;'last '代表删除重复项...,该参数可以取值为’first’(默认值)、 'last ‘和’False’,其中’first’代表删除重复项,仅保留第一次出现的数据项;'last '代表删除重复项,仅保留最后一次出现的数据项;'False...,可以取值为’inner’或’outer’(默认值),其中’inner’表示内连接,即合并结果为多个对象重叠部分的索引及数据,没有数据的位置填充为NaN;'outer’表示外连接,即合并结果为多个对象各自的索引及数据

    13.1K10
    领券