语言之可视化①④一页多图(1) R语言之可视化①⑤ROC曲线 R语言之可视化①⑥一页多图(2) R语言之可视化①⑦调色板 R语言之可视化①⑧子图组合patchwork包 R语言之可视化①⑨之ggplot2中的图例修改...R语言之可视化(20)之geom_label()和geom_text() R语言之可视化(21)令人眼前一亮的颜色包 R语言之可视化(22)绘制堆积条形图 R语言之可视化(23)高亮某一元素 R语言之可视化...(24)生成带P值得箱线图 R语言之可视化(25)绘制相关图(ggcorr包) R语言之可视化(26)ggplot2绘制饼图 R语言之可视化(27)通过R语言制作BBC风格的精美图片 R语言之可视化(28...)蜜蜂图 R语言之可视化(29)如何更改ggplot2中堆积条形图中的堆积顺序 问题:如何控制由ggplot2创建的堆积条的堆积顺序。...解决方案 堆叠在数据框的原始顺序中 ra.melt$quality <- factor(ra.melt$quality, levels = ra$quality) p <- ggplot(ra.melt
就是下面这张图,在途中用条形图展示了不同季节样本浮游动物的组成情况,同时使用带误差棒的折线图来表示浮游动物生物量的变化,相当于在一幅图中同时展示了群落的相对丰度和绝对丰度。 ?...其实我更喜欢分享这种绘图代码,虽然比ggplot2的代码用起来要费事一些,但是可以强迫大家去学习代码中每一个参数的具体含义,通过修改参数的数值也能够理解代码如何调整,通过几个图像的学习,你就会发现自己画一个图也不是什么难事...,这里要注意应用axes = F将坐标轴去除,并使用names.arg将横坐标的标签定义为空,注意有几组其对应的数字就设置为几,xlim的范围从0至样本组数目+2。...使用plot添加折线图,type定义为b表示折线+点,axes同样设置为F去除坐标轴,xlim保持与条形图一致,xlab和ylab均设置为空,ylim根据具体的数据进行调整。...使用text添加横坐标标签时,要注意y的数值,这个需要根据上一步折线图中ylim的范围进行调整。
如何来展现的你的数据?是你有时不得不去思考的一个问题。不同的展示方法,其效果往往差异巨大。这里我将结合近期的一些阅读和实践,试图给出一些方法,希望能帮助到你。 1....上面在一张图中展示31个省市自治区的GDP数据,使用条形图展示就非常合适。上图还使用了两个常见的条形图技巧。一个数值排序,这样有利于受众数值对比,二是使用了色温显示进一步加强了对比。...但我仍然觉得饼图不值它占据的这块地方。 用水平条形图替代饼图,按从大到小或者反向组织。记住,在条形图中,我们的眼睛会比较条形图的末端。由于以统一的基线对齐,很容易比较相对大小。...去除边框 对于图中边框,一般是不需要的。可以考虑使用留白对页面中的图表和其他元素进行合理的区分。...尽可能地完全去除网格线,这样会形成更强烈的对比,从而使数据更突出。 去除数据标记 每一个元素都会增加受众的认知负荷。使用数据标记,就是在为本来已经可以根据线条直观处理的数据增加认知负荷。
如何来展现的你的数据?是你有时不得不去思考的一个问题。 不同的展示方法,其效果往往差异巨大。这里我将结合近期的一些阅读和实践,试图给出一些方法,希望能帮助到你。 1....上面在一张图中展示31个省市自治区的GDP数据,使用条形图展示就非常合适。上图还使用了两个常见的条形图技巧。一个数值排序,这样有利于受众数值对比,二是使用了色温显示进一步加强了对比。...但我仍然觉得饼图不值它占据的这块地方。 ? 用水平条形图替代饼图,按从大到小或者反向组织。记住,在条形图中,我们的眼睛会比较条形图的末端。由于以统一的基线对齐,很容易比较相对大小。...去除边框 对于图中边框,一般是不需要的。可以考虑使用留白对页面中的图表和其他元素进行合理的区分。...尽可能地完全去除网格线,这样会形成更强烈的对比,从而使数据更突出。 去除数据标记 每一个元素都会增加受众的认知负荷。使用数据标记,就是在为本来已经可以根据线条直观处理的数据增加认知负荷。
即使基础数据相似,小样本量时分布和四分位数也可能有显著差异。分布和四分位数只有在样本量较大时才具有实际意义。我曾进行过一项实验,多次从同一个正态分布中抽取样本,并计算每个样本的四分位数。...在热图或颜色渐变中,一个常见的错误是让最浅或最深的颜色代表一些随意的数值,这就像条形图中最长的条不代表最大值一样糟糕。你能想象这种情况吗? 4....条形图 我们之前提到过,不建议用条形图来区分均值,但这里讨论的是另一个问题,它涉及到如何呈现多因素实验的结果。条形图在科学出版物中非常普遍,但遗憾的是,它们在传达实验结果方面效果不佳。...条形图之所以普遍,是因为多因素实验非常普遍。但是,条形图的设计并不适合其传达目的。要有效地展示多因素实验的结果,需要精心设计,通过感兴趣的因素进行分组或分面。...网格中展示的是 z 分数。如果不对行和列进行重排,我们无法从热图中获取任何有价值的信息。我们可以通过聚类来重排行和列,但这并不是唯一的方法。
简介 最近科研绘图中,需要解决这么一个需求。如何将下图中的左图(低配版)转化为右图(高配版, x,y 轴分离)。 低配版条形图 首先,构造一个数据集作为样例,读者可以根据自己的数据进行调整即可。...高配版条形图 使用 geom_rangeframe()将 x,y 轴分离。...填充的 legend 没有实际含义,所以将图例去除(legend.position = 'none')。 注意:这里将柱子按照类别进行填充,当然你也可以使用另一个变量进行填充(下面会给例子)。...进阶版条形图 如前面所说,如果读者还想表达另一个变量与这两个变量之间的关系。...推文以条形图作为例子进行详细讲解(试图教会你们)。当然这种技巧也可以使用其他图形中。读者如有需求,可以自行探索。
小面化指的是在单独、并排的图形上显示观察组。需要注意,ggplot2包在定义组或面时使用因子。 这里我们使用mtcars数据集查看分组和面,并进行绘图。 ?...绘制诸如条形图和点等对象的位置。...对条形图来说,'dodge'将分组条形图并排,'stacked'堆叠分组条形图,'fill'垂直地堆叠分组条形图并规范其高度相等。对于点来说,'jitter'减少点重叠。...singer_combine_fig.png 箱线图展示了在singer数据框中每个音部的25%,50%,75%分位数得分和任意的异常值。...分面 如果组在图中并排出现而不是重叠为单一的图形,关系就是清晰的。我们可以使用facet_wrap()函数和facet_grid()函数创建网格图形(在ggplot2中也称为刻面图)。
由于条形图可以分成水平也垂直的,所以也就分垂直和水平条形图了。饼图强调各个部分的总和并且可以突出显示简单的区分。但是每一部分之间的比较的话,并排的条形图可能更好一些。...堆叠的条形图对于每一部分的比较不是很容易区分,但是在比较多组比例的时候很有用。 ? 如果要进行多组比较的时候,这个时候饼图的空间往往就不够了。这个时候如果分组比较少的话,分组的条形图可以使用的。...另一方面,当我们要可视化两个以上的变量时,我们可以选择以相关图而不是基础原始数据的形式绘制相关系数。 ? 当x轴表示时间或严格增加的变量(例如治疗剂量)时,我们通常绘制线图。...此外,我们可以根据数据为地图中的区域着色,从而显示不同区域中的数据值。这样的图被称为choropleth。...对于平滑的线图,误差条可以使用置信范围来表示。 ? 文章推荐 《数据可视化基础》第三章:图形颜色如何选择 《数据可视化基础》第二章:坐标轴 《数据可视化基础》第一章:把数据放到图表上
然而,箱线图有助于精确定位 X 和 Y 的中位数、第 25 和第 75 百分位数。 ? 8....直方密度线图(Density Curves with Histogram) 带有直方图的密度曲线汇集了两个图所传达的集体信息,因此您可以将它们放在一个图中而不是两个图中。 ? 24....每条垂直线(在自相关图上)表示系列与滞后 0 之间的滞后之间的相关性。图中的蓝色阴影区域是显着性水平。那些位于蓝线之上的滞后是显着的滞后。 那么如何解读呢?...对于空乘旅客,我们看到多达 14 个滞后跨越蓝线,因此非常重要。这意味着,14 年前的航空旅客交通量对今天的交通状况有影响。...PACF 在另一方面显示了任何给定滞后(时间序列)与当前序列的自相关,但是删除了滞后的贡献。 ? 38.
然而,箱线图有助于精确定位 X 和 Y 的中位数、第 25 和第 75 百分位数。 8....直方密度线图(Density Curves with Histogram) 带有直方图的密度曲线汇集了两个图所传达的集体信息,因此您可以将它们放在一个图中而不是两个图中。 24....每条垂直线(在自相关图上)表示系列与滞后 0 之间的滞后之间的相关性。图中的蓝色阴影区域是显着性水平。那些位于蓝线之上的滞后是显着的滞后。 那么如何解读呢?...对于空乘旅客,我们看到多达 14 个滞后跨越蓝线,因此非常重要。这意味着,14 年前的航空旅客交通量对今天的交通状况有影响。...PACF 在另一方面显示了任何给定滞后(时间序列)与当前序列的自相关,但是删除了滞后的贡献。 38.
手头的数据,大部分时候是原始数据集,准确地说,应该是基于目的驱动所采集过来的原始数据集,面对这些原始数据集,如何揭示事情的真相,这就是我们需要思考和行动的事情。...条形图中的每一个长方形代表一个特定的类,长方形的长度代表某种数值。长方形越长,数值越大。所以长方形的宽度相等。...堆砌条形图和分段条形图,当你想比较频数,可以使用堆砌条形图;当你要同时体现频数和百分数时,可以使用分段条形图。...对于各种数据结果,如何进行数据可视化?...一方面取决于我们数据结果的特性,是类别数据结果,还是数值型结果; 另一方面取决于我们希望向用户传达什么信息,记住:向用户最直观地传达最重要和价值的信息。
手头的数据,大部分时候是原始数据集,准确地说,应该是基于目的驱动所采集过来的原始数据集,面对这些原始数据集,如何揭示事情的真相,这就是我们需要思考和行动的事情。...当你发现数据的真相之后,接下来就需要借助可视化的方法来表现,使之公之于众。对于数据的真相,如何进行可视化,选择可视化哪种方式,需要我们思考和践行,并且还要考虑受众的感觉和希望给予受众什么。...条形图中的每一个长方形代表一个特定的类,长方形的长度代表某种数值。长方形越长,数值越大。所以长方形的宽度相等。...堆砌条形图和分段条形图,当你想比较频数,可以使用堆砌条形图;当你要同时体现频数和百分数时,可以使用分段条形图。...对于各种数据结果,如何进行数据可视化? 一方面取决于我们数据结果的特性,是类别数据结果,还是数值型结果; 另一方面取决于我们希望向用户传达什么信息,记住:向用户最直观地传达最重要和价值的信息。
完全没有指出图表的重点,公司销售趋势是怎么样的?分公司销售分布又是如何?...当存在同一张折线图存在多条折线时,需要将最关注的线加粗加亮。但是当出现非常多折线时,我们的折线图就会呈现出“方便面式”图表,往往导致图表混乱。...如下图: 解决“方便面式”图表的方式可通过将折线图拆分到不同的小的折线图中,虽然图表变多了,但是所需要表达的主题也能更加清晰: 在时间序列对比中,可通过箭头、线条、阴影等方式强调数据的某一部分,将听众的注意力集中到你所期待关注的点上...看以下2张图,同样都是对杭州房价的描述: 同样的数据,产出的图表给人截然不同的感觉。那么我们到底应该如何定义刻度呢。...相关性对比通常使用散点图或双条形图来展示。如下图: 在双条形图中,我们将独立变量按顺序排在左边,而把对比值放在右边,如果期望模式与实际模式一致时,右边的条形图就会变成左边的条形图的镜像,如下面左图。
绘图是数据分析工作中的重要一环,是进行探索过程的一部分。...2.条形图 条形图(bar chart)是用宽度相同的条形的高度或长短来表示数据多少的图形。条形图可以横置或纵置,纵置时也称为柱状图(column chart)。...此外,条形图有简单条形图、复式条形图等形式。...3.折线图 折线图是排列在工作表的列或行中的数据可以绘制到折线图中。折线图可以显示随时间(根据常用比例设置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势。...2D饼图为圆形,仅排列在工作表的一列或一行中的数据可以绘制到饼图中。饼图常用图显示一个数据系列中各项的大小与各项总和的比例。
1.5 分面将图分割成多个分面1.5.1 通过单个变量对图进行分面facet_wrap()后面跟的是离散型变量ggplot(data = mpg) + geom\_point(mapping = aes...“.”的作用表示不在行或列的维度分面“.”在前表示不按行分面,在后表示不按列分面ggplot(data = mpg) + geom_point(mapping = aes(x = displ, y =...优势:根据想要观测的变量将数据分为每一分面,显示出每一分面中的趋势及不同分面之间的差别劣势:由于数据被分割为一个个的分面,数据整体的趋势就看不出来了如果有一个更大的数据集,就需要根据目标判断,如果看整体趋势的话就不用分面...1.6 几何对象1.6.1 几何对象的定义几何对象:图中用来表示数据的几何图形对象条形图:使用了条形几何对象折线图:使用了直线几何对象箱线图:使用了矩形和直线几何对象可以使用不同的几何对象来表示同样的数据...哪些参数可以控制它的行为?(5)在比例条形图中,我们需要设定group = 1,这是为什么呢?换句话说,以下两张图会有什么问题?
进一步我们再去绘制一个基于分组形成的数据来绘制类似条形图的形状。 ? 通过以上直方图绘制的步骤我们可以了解到,其实直方图的绘制还是和分组的多少(bin)。...在密度图中,我们试图通过绘制适当的连续曲线来可视化数据的潜在概率分布。关于密度图的绘制,其实和直方图一样也是分了两步,只不过第一步的分组是分了很多小组。...(ii) 不同亚组之间的比较也是很难做到的,在图中我们很难看出男女之间在某一年龄段的差异有多少。 ? 为了解决上面的问题,我面可以尝试把两个分组都从零开始并使部分透明来解决这个问题,这样虽然解决了?...同时在每一个分面里面添加总的分布来进行额外的比较。 ? 最后,当我们想要精确地显示两个分布时,我们也可以制作两个独立的直方图,将它们旋转90度,并使两个直方图背靠背。...以上介绍的,都是两组分布的时候如何可视化,如果是多组的话,如果使用直方图就比较混乱了。这个时候,就应该使用密度图可能更好一些。 ?
,有两点需要说明,一方面,在ggplot2绘图过程中均采用图层思想,将多个图形进行叠加和设置;另一方面,图层思想是通过代码中的加号(+)表现出来的。...:用于设置条形图的其他属性信息,如统一的边框色、填充色、透明度等; width:用于设置条形图的宽度,默认为0.9的比例; binwidth:该参数在条形图中已不再使用,但可以使用在绘制直方图的geom_histogram...然而,在实际的企业环境中,这样的图形出现的频次并不是很高,因为绝对数量的堆叠条形图并不能够达到刺激效果。读者不妨使用下面介绍的百分比堆叠条形图。...双离散单数值的百分比堆叠条形图 # 明细数据--双离散单数值变量的百分比堆叠条形图 ggplot(data = weather2017, mapping = aes(x = aqiInfo, fill...对于数值型变量有两个,离散型变量有一个的数据该如何绘制条形图呢(如常见的环比、同比问题),这里提供一个解决思路,那就是使用对比条形图。
以下是零售门店的战力示例,台州市幸福路店的销售笔数相对较好,超过了73%的门店;客单价排在末位。具体如何操作呢?...首先需要计算战力,假如有10家店铺,某店业绩排名第2,意味着该店后面有8家店铺,所以该店战力80%,超过了80%的门店,即 (总门店数-该门店排名)/总门店数 图表是普通的百分比条形图,可以使用DAX和...为所有指标设置条形图,并标记为图像URL: 将战力度量值放入矩阵的值区域,放入时我去除了度量值中的"战力_",以便图表展示。矩阵的行列不放任何字段。...将值切换到行,百分比条形图即可纵向显示: 矩阵上方的标题可以使用SELECTEDVALUE进行动态展示,随门店切片进行变化: 这样的可视化效果有利于一眼发现门店的优劣势,前期在《Power BI...如何从众多的指标发现问题?》
如何绘制直方图/条形图 1)需要什么格式的数据 本次我们来看一个新的R提供的数据,就是闪闪发光的钻石?Diamonds。 ?...所以前者我们做直方图,后者我们做条形图。 2)如何使用ggplot2做直方图 首先我们来看看钻石重量的直方图。...3)如何使用ggplot2做条形图 然后我们来瞧瞧条形图。...从图中我们可以看到不同等级净度的钻石情况。 4)如何做好看的直方/条形图 利用下述代码我们可以得到不同重量的钻石切割水平的情况。...geom_histogram(bins = 20,color='black')+#分为20个组,添加边框 theme_bw()+ theme( panel.grid = element_blank()#去除背景的分割线
领取专属 10元无门槛券
手把手带您无忧上云