Python按照某些列去重,可用drop_duplicates函数轻松处理。本文致力用简洁的语言介绍该函数。...默认值False,即把原数据copy一份,在copy数据上删除重复值,并返回新数据框(原数据框不改变)。值为True时直接在原数据视图上删重,没有返回值。...导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 name = pd.read_csv('name.csv...原始数据中只有第二行和最后一行存在重复,默认保留第一条,故删除最后一条得到新数据框。 想要根据更多列数去重,可以在subset中添加列。...但是对于两列中元素顺序相反的数据框去重,drop_duplicates函数无能为力。 如需处理这种类型的数据去重问题,参见本公众号中的文章【Python】基于多列组合删除数据框中的重复值。 -end-
一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,问题如下:譬如我要查找某列中最大的值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通的,也能顺利地解决自己的问题。...顺利地解决了粉丝的问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出的问题,感谢【瑜亮老师】给出的思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。
最近公司在做关联图谱的项目,想挖掘团伙犯罪。在准备关系数据时需要根据两列组合删除数据框中的重复值,两列中元素的顺序可能是相反的。...我们知道Python按照某些列去重,可用drop_duplicates函数轻松处理。 但是对于两列中元素顺序相反的数据框去重,drop_duplicates函数无能为力。...本文介绍一句语句解决多列组合删除数据框中重复值的问题。 一、举一个小例子 在Python中有一个包含3列的数据框,希望根据列name1和name2组合(在两行中顺序不一样)消除重复项。...二、基于两列删除数据框中的重复值 1 加载数据 # coding: utf-8 import os #导入设置路径的库 import pandas as pd #导入数据处理的库...import numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 df =
一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据处理的问题,一起来看看吧。 大佬们,如何把某一列中包含某个值的所在行给删除?比方说把包含电力这两个字的行给删除。...这里【FANG.J】指出:数据不多的话,可以在excel里直接ctrl f,查找“电力”查找全部,然后ctrl a选中所有,右键删除行。...二、实现过程 这里【莫生气】给了一个思路和代码: # 删除Column1中包含'cherry'的行 df = df[~df['Column1'].str.contains('电力')] 经过点拨,顺利地解决了粉丝的问题...顺利地解决了粉丝的问题。 但是粉丝还有其他更加复杂的需求,其实本质上方法就是上面提及的,如果你想要更多的话,可以考虑下从逻辑 方面进行优化,如果没有的话,正向解决,那就是代码的堆积。...这篇文章主要盘点了一个Pandas数据处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。
在进行数据分析和建模过程中,大量时间花费在数据准备上:加载、清洗、转换和重新排列,这样的工作占用了分析师80%以上的时间。本章将讨论用于缺失值、重复值、字符串操作和其他数据转换的工具。...1、处理缺失值 缺失数据在数据分析中很容易出现,在pandas中使用NaN表示缺失值,称NaN为容易检测到的缺失值;同时python内建的None值在对象数组中也会被当做NA处理: import numpy...,可能会复杂一点,可能想要删除全部为NA的列或者含有NA的行或列,dropna默认情况下会删除包含缺失值的行: data = pd.DataFrame([[1, 2.5, 3], [1, NA, NA...NA的行;传入axis=1,可以删除均为NA的列。...dropna()方法,默认删除含有缺失值的行 (2)传入how="all"可以删除全部为缺失值的行 (3)传入axis=1可以删除列 (4)传入thresh可以保留一定数量的观察值的行 处理缺失值是数据分析的第一步
我们删除了4列,因此列数从14减少到10。 2.读取时选择特定的列 我们只打算读取csv文件中的某些列。读取时,列列表将传递给usecols参数。如果您事先知道列名,则比以后删除更好。...8.删除缺失值 处理缺失值的另一种方法是删除它们。“已退出”列中仍缺少值。以下代码将删除缺少任何值的行。...df.isna().sum().sum() --- 0 9.根据条件选择行 在某些情况下,我们需要适合某些条件的观察值(即行)。例如,下面的代码将选择居住在法国并且已经流失的客户。...如果我们将groupby函数的as_index参数设置为False,则组名将不会用作索引。 16.带删除的重置索引 在某些情况下,我们需要重置索引并同时删除原始索引。...method参数指定如何处理具有相同值的行。first表示根据它们在数组(即列)中的顺序对其进行排名。 21.列中唯一值的数量 使用分类变量时,它很方便。我们可能需要检查唯一类别的数量。
具有极其活跃的社区和覆盖全领域的第三方库工具库,近年来一直位居编程语言热度头部位置,而数据科学领域最受欢迎的python工具库之一是 Pandas。...图片Pandas的功能与函数极其丰富,要完全记住和掌握是不现实的(也没有必要),资深数据分析师和数据科学家最常使用的大概有二三十个函数。在本篇内容中,ShowMeAI 把这些功能函数总结为10类。...图片 5.处理重复我们手上的数据集很可能存在重复记录,某些数据意外两次输入到数据源中,清洗数据时删除重复项很重要。...以下函数很常用:duplicated: 识别DataFrame中是否有重复,可以指定使用哪些列来标识重复项。drop_duplicates:从 DataFrame 中删除重复项。...isnull:检查您的 DataFrame 是否缺失。dropna: 对数据做删除处理。注意它有很重要的参数how(如何确定观察是否被丢弃)和 thred(int类型,保留缺失值的数量)。
导读:在进行数据分析和建模的过程中,大量的时间花在数据准备上:加载、清理、转换和重新排列。本文将讨论用于缺失值处理的工具。 缺失数据会在很多数据分析应用中出现。...在统计学应用中,NA数据可以是不存在的数据或者是存在但不可观察的数据(例如在数据收集过程中出现了问题)。...你可能想要删除全部为NA或包含有NA的行或列。...假设你只想保留包含一定数量的观察值的行。...他是一名活跃的演讲者,也是Python数据社区和Apache软件基金会的Python/C++开源开发者。目前他在纽约从事软件架构师工作。
我们将讨论pandas如何仅凭一个线性函数使执行特征工程变得更加容易。 介绍 Pandas是用于Python编程语言的开源高级数据分析和处理库。使用pandas,可以轻松加载,准备,操作和分析数据。...使用pandas Dataframe,可以轻松添加/删除列,切片,建立索引以及处理空值。 现在,我们已经了解了pandas的基本功能,我们将专注于专门用于特征工程的pandas。 !...注意:在代码中,我使用了参数drop_first,它删除了第一个二进制列(在我们的示例中为Grocery Store),以避免完全多重共线性。...使用qcut函数,我们的目的是使每个bin中的观察数保持相等,并且我们没有指定要进行拆分的位置,最好仅指定所需的bin数。 在case cut函数中,我们显式提供bin边缘。...在这里,我们明确提供了这些箱,并且我们可以清楚地看到每个箱中都有不同数量的观察值。
标签:Python与Excel,pandas 在Excel中,我们可以通过单击功能区“数据”选项卡上的“删除重复项”按钮“轻松”删除表中的重复项。确实很容易!...因此,我们将探讨如何使用Python从数据表中删除重复项,它超级简单、快速、灵活。 图1 准备用于演示的数据框架 可以到完美Excel社群下载示例Excel电子表格以便于进行后续操作。...我们将了解如何使用不同的技术处理这两种情况。 从整个表中删除重复项 Python提供了一个方法.drop_duplicates()可以帮助我们轻松删除重复项!...记录#1和3被删除,因为它们是该列中的第一个重复值。 现在让我们检查原始数据框架。它没有改变!这是因为我们将参数inplace留空,默认情况下其值为False。...如果我们指定inplace=True,那么原始的df将替换为新的数据框架,并删除重复项。 图5 在列表或数据表列中查找唯一值 有时,我们希望在数据框架列的列表中查找唯一值。
这不仅可以帮助我们查看哪些要素是线性相关的,而且如果要素之间的相关性很强,我们可以将其删除以防止信息重复。 您如何衡量相关性? 在数据科学中,我们可以使用r值,也称为Pearson的相关系数。...接近-1时,负相关性越强(即,列越“相反”)。越接近0,相关性越弱。 r值公式 ? 让我们通过一个简单的数据集进行相关性的可视化 它具有以下列,重量,年龄(以月为单位),乳牙数量和眼睛颜色。...在成长中的孩子中,随着年龄的增长,他们的体重开始增加。 年龄和乳牙 ? 相反,年龄和乳牙散点图上的点开始形成一个负斜率。该相关性的r值为-0.958188。这表明了很强的负相关关系。...使用core()方法 使用Pandas correlation方法,我们可以看到DataFrame中所有数字列的相关性。因为这是一个方法,我们所要做的就是在DataFrame上调用它。...runtime 与任何流平台之间都没有关联 Netflix与年份之间没有关联 有了这些信息,我们可以进行一些观察。
在本节中,我们将讨论缺失数据的一些一般注意事项,讨论 Pandas 如何选择来表示它,并演示一些处理 Python 中的缺失数据的 Pandas 内置工具。...在标记方法中,标记值可能是某些特定于数据的惯例,例如例如使用-9999或某些少见的位组合来表示缺失整数值,或者它可能是更全局的惯例,例如使用NaN(非数字)表示缺失浮点值,这是一个特殊值,它是 IEEE...Pandas 中的缺失数据 Pandas 处理缺失值的方式受到其对 NumPy 包的依赖性的限制,NumPy 包没有非浮点数据类型的 NA 值的内置概念。...这可以通过how或thresh参数来指定,这些参数能够精确控制允许通过的空值数量。 默认值是how ='any',这样任何包含空值的行或列(取决于axis关键字)都将被删除。...参数允许你为要保留的行/列指定最小数量的非空值: df.dropna(axis='rows', thresh=3) 0 1 2 3 1 2.0 3.0 5 NaN 这里删除了第一行和最后一行,因为它们只包含两个非空值
本文为你介绍Pandas隐藏的炫酷小技巧,我相信这些会对你有所帮助。 或许本文中的某些命令你早已知晓,只是没意识到它还有这种打开方式。 ? Pandas是一个在Python中广泛应用的数据分析包。...当要你所读取的数据量特别大时,试着加上这个参数 nrows = 5,就可以在载入全部数据前先读取一小部分数据。如此一来,就可以避免选错分隔符这样的错误啦(数据不一定都是用逗号来分隔)。...(或者在linux系统中,你可以使用‘head’来展示任意文本文件的前五行:head -c 5 data.txt) 接下来,用 df.columns.tolist() 可以提取每一列并转换成list。...2. select_dtypes 如果已经在Python中完成了数据的预处理,这个命令可以帮你节省一定的时间。...缺失值的数量 当构建模型时,我们可能会去除包含过多缺失值或是全部是缺失值的行。这时可以使用.isnull()和.sum()来计算指定列缺失值的数量。
这不仅可以帮助我们了解哪些特征是线性相关的,而且如果特征是强相关的,我们可以删除它们以防止重复信息。 如何衡量相关性 在数据科学中,我们可以使用r值,也称为皮尔逊相关系数。...在一个成长中的孩子,随着年龄的增长,体重开始增加。 年龄和乳牙 ? 反之,绘图点上的年龄和乳牙散点图开始形成负斜率。这种相关性的r值为-0.958188。这意味着强烈的负相关。直觉上,这也是有道理的。...在最后一个散点图上,我们看到一些没有明显坡度的点。这种相关性的r值为-0.126163。年龄与眼睛颜色无显著相关。这也应该是有道理的,因为眼睛的颜色不应该随着孩子年龄的增长而改变。...使用core方法 使用Pandas 的core方法,我们可以看到数据帧中所有数值列的相关性。因为这是一个方法,我们所要做的就是在DataFrame上调用它。返回值将是一个显示相关性的新数据帧。...runtime和任何流媒体平台之间没有相关。Netflix和Year之间没有相关 一些观察 有了这些信息,我们可以做一些观察。
“软件工程师阅读教科书作为参考时不会记住所有的东西,但是要知道如何快速查找重·要的知识点。” ? 为了能够快速查找和使用功能,使我们在进行机器学习模型时能够达到一定流程化。...选择 在训练机器学习模型时,我们需要将列中的值放入X和y变量中。...在DataFrame中,有时许多数据集只是带着缺失的数据的,或者因为它存在而没有被收集,或者它从未存在过。...有几个有用的函数用于检测、删除和替换panda DataFrame中的空值。...mean():返回平均值 median():返回每列的中位数 std():返回数值列的标准偏差。 corr():返回数据格式中的列之间的相关性。 count():返回每列中非空值的数量。
变量是可以测量或计数的任何特征,数量或数量。 变量之所以如此命名,是因为值在总体中的数据单元之间可能会有所不同,并且值可能会随时间变化。...类别变量的示例是性别,社会阶层,血型,国家/地区,观察时间或等级(例如李克特量表)。 连续 连续变量是一个可以接受无限多个(不可数数量)值的变量。 观察值可以取某个实数集之间的任何值。...处理仍在继续,但是 Pandas 通过返回NaN可以让您知道存在问题(但不一定是问题)。 Pandas 索引中的标签不必唯一。 对齐操作实际上在两个Series中形成标签的笛卡尔积。...此属性返回数据帧中数据值的数量。...-2e/img/00225.jpeg)] 总结 在本章中,您学习了如何使用 Pandas DataFrame对象执行几种常见的数据操作,特别是通过添加或删除行和列来更改DataFrame结构的操作。
参考链接: Python | pandas 合并merge,联接join和级联concat 文章目录 1....,默认None. 1.2 重复值的处理 当数据中出现了重复值,在大多数情况下需要进行删除。 ...(1)QL称为下四分位数,表示全部观察中四分之一的数据取值比它小 (2)QU称为上四分位数,表示全部观察值中有四分之一的数据取值比它大 (3)IQR称为四分位数间距,是上四分位数0与下四分位数则之差...merge()函数还支持对含有多个重叠列的 Data frame对象进行合并。 使用外连接的方式将 left与right进行合并时,列中相同的数据会重叠,没有数据的位置使用NaN进行填充。 ...3.2 轴向旋转 在 Pandas中pivot()方法提供了这样的功能,它会根据给定的行或列索引重新组织一个 DataFrame对象。
pandas 官方文档地址:https://pandas.pydata.org/ 在 Python 中,使用 pandas 库通过列表字典(即列表里的每个元素是一个字典)创建 DataFrame 时,如果每个字典的...缺失值处理:如果某些字典缺少某些键,则相应地,在结果 DataFrame 中该位置将被填充为 NaN(Not a Number),表示缺失值。...输出结果将展示如下: 我们从上面的示例就容易观察到: 生成的 DataFrame 中的列顺序遵循了首次出现键的顺序。...在个别字典中缺少某些键对应的值,在生成的 DataFrame 中该位置被填补为 NaN。...希望本博客能够帮助您深入理解 pandas 在实际应用中如何处理数据不一致性问题。
DataFrame 本身有行索引,也有列索引。这里需要注意一下,它是拥有列索引的,这一点是我们之前没有接触过的。...参数header就是显式的说明文件中没有头,自动帮我创建一个头吧。...日期格式的数据是我们在进行数据处理的时候经常遇到的一种格式,让我来看一下在Excel中的日期类的数据我们该如何处理?...在企业中进行数据处理时,对于异常的值,一定要和你的业务场景结合起来才有意义,就像上边的出生日期一样,放在现在肯定是异常的值了,但放在百年前,那就是正常的值。...参数data,指的是你的数据集。 参数values,指的是要用来观察分析的数据值,就是Excel中的值字段。 参数index,指的是要行索引的数据值,就是Excel中的行字段。
本文为你介绍Pandas隐藏的炫酷小技巧,我相信这些会对你有所帮助。 或许本文中的某些命令你早已知晓,只是没意识到它还有这种打开方式。 ? Pandas是一个在Python中广泛应用的数据分析包。...当要你所读取的数据量特别大时,试着加上这个参数 nrows = 5,就可以在载入全部数据前先读取一小部分数据。如此一来,就可以避免选错分隔符这样的错误啦(数据不一定都是用逗号来分隔)。...另外,如果你知道某些列的类型,你可以加上dtype = {‘c1’: str, ‘c2’: int, …} ,这样会加快载入的速度。...2. select_dtypes 如果已经在Python中完成了数据的预处理,这个命令可以帮你节省一定的时间。...缺失值的数量 当构建模型时,我们可能会去除包含过多缺失值或是全部是缺失值的行。这时可以使用.isnull()和.sum()来计算指定列缺失值的数量。
领取专属 10元无门槛券
手把手带您无忧上云