作者 李奇 本文为 CDA 金牌讲师原创作品,转载需授权 此文将从销售漏斗管理分析的业务背景、Excel 平台上的实施方式以及销售漏斗管理分析仪的实现过程三方面内容进行说明,希望帮助有此类业务分析需求的朋友拓展思路。 业务背景 销售漏斗是科学反映商机状态以及销售效率的一种重要的销售管理模型,此模型应用广泛,适用于多种不同类型的销售体系,其中尤其适用于关系型销售企业,也就是适用于需要长期维护客户关系的企业。 销售漏斗指的是将从发现商业机会开始到最终与客户成交为止的销售过程按照不同的销售进度分为几个不同的
本文为CDA金牌讲师李奇原创,转载请获得授权并注明来源 此文将从销售漏斗管理分析的业务背景、Excel平台上的实施方式以及销售漏斗管理分析仪的实现过程三方面内容进行说明,希望帮助有此类业务分析需求的朋友拓展思路。 业务背景 销售漏斗是科学反映商机状态以及销售效率的一种重要的销售管理模型,此模型应用广泛,适用于多种不同类型的销售体系,其中尤其适用于关系型销售企业,也就是适用于需要长期维护客户关系的企业。 销售漏斗指的是将从发现商业机会开始到最终与客户成交为止的销售过程按照不同的销售进度分为几个不同的销售阶段,
前言:“数据(data)”已经成为21世纪商业的代名词。聚拢大量数据的浪潮正变得愈加猛烈。公司无论所属行业和规模大小,都竭力想要实现以数据为基础驱动公司内部和外部运转的自动化,将流程数字化,并且打造出企业自身的信息库,在这个过程,企业管理层必须面对的问题不在于收集了多少数据,本文通过形象的例子告诉你什么是恰当的数据,并且教你如何解读。 很多企业认为自己是数据驱动型企业,但其企业内部却并未形成一套完备的数据运营管理体系结构,往往参与数据分析的人员只是寥寥几人或者某一个部门,如果数据团队成员有太多的共同点(比如
大家好,今天要给大家介绍的是商业策略。下面演示一个实际案例,帮您更好的了解这类岗位。
上一篇B2B行业基本分析思路写完后,很多同学都在催更。在大家热情点击在看下,召唤出本篇。很多同学在抱怨,说自己公司根本没有数据,该怎么分析呢?这个时候一定要牢记这八字字真言:
在本文中,我们将深入探讨数据分析的核心概念和技术,以及如何使用Python进行数据分析和可视化。我们将通过一个实际的案例研究,演示如何使用数据分析工具来解析销售趋势,从而为业务决策提供有力的支持。
在数据科学和分析领域,Python语言因其强大的数据处理库而备受青睐。其中,Pandas是Python中最常用的数据分析库之一,而Jupyter Notebook则是一个流行的交互式计算环境,可让用户在浏览器中创建和共享文档,其中包含实时代码、可视化和解释性文本。本文将介绍如何结合Pandas和Jupyter Notebook进行数据分析,并提供一些示例来演示它们的强大功能。
在做数据分析时,我们会经常听到同比、环比同比的概念。各个企业和组织在发布统计数据时,通常喜欢用同比、环比来和之前的历史数据进行比较,用来说明数据的变化情况。例如,统计局公布2022年1月份CPI同比增长0.9%,环比增长0.6%。
陕西宝光真空电器股份有限公司(以下简称“宝光股份”)是享誉国内外的真空灭弧室产销基地,市场占有率连续多年稳居行业前列。2017年起蝉联工信部授予宝光股份“制造业单项冠军示范企业”称号,“宝光牌”真空灭弧室曾荣获第五届亚太博览会金奖、国家科技进步奖特等奖1项、二等奖1项等诸多奖项,建设“真空电器技术国家地方联合工程研究中心”。
在一家年销售不到10亿的电商公司(行业中大部分电商企业年销售可能都不到1个亿),你只要掌握一些基础的数据分析方法,再配合Excel表格,就足够你完成各种数据化运营工作了。
在解决某个数学问题时,我们可以套入对应的公式进行解决; 那在数据分析里,也可以使用对应的公式来分析问题,并且对未来构建数据分析模型也有帮助; 给大家分享一下五种常见的数据方法,我们一起来看一下。
很多同学抱怨,销售分析很难做。能用的数据很少,领导们的期望却很高,总指望通过数据能直接提升业绩,咋办!今天我们系统解答一下。销售形式有很多种,不带入具体场景是很难讨论的。因此我们来个具体场景:
一提起指标体系,很多同学像说相声一样,脱口而出“AARRR”“OSM”“UJM”……讲得好开心,可面试官多反驳一句:“我这是销售运营的指标体系!”“说清楚到底O是什么O,U是怎么U的!”就会让很多同学没了办法。今天系统讲解下,该如何处理此类问题。
随着大数据时代的到来,数据分析已经成为了零售业非常重要的一环,也是精细化运营的基础。零售业数据分析包括:
腾讯、阿里抢滩新零售,让这个自2016年年底起来的风口进入最后的格局固化时期,新零售仍将继续,但阿里、腾讯、独立品牌(例如乐语)的零售三国可能即将定格。
只需要获取当日累计的销售额,于是店老板就用 Excel或者纸质的表格创建了一个表,表中包含销售的日期时间,销售的产品,销售的数量,以及卖出的单价是多少。如此每天进行一个汇总,或者月底进行汇总就可以知道当天或当月的销售额是什么情况了。
前言 本篇文章同样是继续微软系列挖掘算法总结,前几篇主要是基于状态离散值或连续值进行推测和预测,所用的算法主要是三种:Microsoft决策树分析算法、Microsoft聚类分析算法、Microsoft Naive Bayes 算法,当然后续还补充了一篇结果预测篇,所涉及的应用场景在前几篇文章中也有介绍,有兴趣的同学可以点击查看,本篇我们将总结的算法为Microsoft时序算法,此算法也是数据挖掘算法中比较重要的一款,因为所有的推算和预测都将利用于未来,而这所有的一切都将有一条时间线贯穿始终,而这将是时序算
在数据分析中,数据分析思维是框架式的指引,实际分析问题时还是需要很多“技巧工具”的。就好比中学里你要解一元二次方式,可以用公式法、配方法、直接开平方法、因式分解法。
大家好!今天我要和大家分享一个有趣的实际案例,我们将使用Python和NumPy库进行数据分析。在这个案例中,我们将探索如何分析一家咖啡馆的销售数据,以了解他们的销售趋势和最受欢迎的产品。
今天就单独用一篇实操文章来讲解一下如何做一次完整的数据可视化分析,全部过程大约耗时30分钟。
在正式开始之前,云朵君为大家准备了一些常见的基础的电商分析基础知识,对于数据分析小白较为友好,电商分析大佬可酌情查看,若有写得不好的地方,还望大佬纠正,共同进步!
哪些是最大和最快增长的客户? 各个销售组织是否完成目标利润? 对某一个产品线的促销活动绩效如何? 某一产品、产品组的获利能力如何?
程序员必备的面试技巧,就像是编写一段完美的代码一样重要。在面试战场上,我们需要像忍者一样灵活,像侦探一样聪明,还要像无敌铁金刚一样坚定。只有掌握了这些技巧,我们才能在面试的舞台上闪耀光芒,成为那个令HR们心动的程序猿!
这是精心整理的商品数据化运营应用场景和分析工具模型了。商品运营是很多公司的核心工作,也就是说,如何把产品快速高效地卖出去。数据始终贯穿其中,从销售预测到库存管理、从商品结构优化到动销管理、从捆绑销售到关联组合。 这份脑图包括如何用数据做库存分析、市场分析、销售预测、促销分析。 比如市场分析: 1、公司要打造新产品,该产品的市场容量有多少?预期年销售量有多少? 2、用户对于产品的关注点在哪里?最满意和最不满意的点都分别是哪些? 3、新产品要上线,售价应该定在多少会比较合适? 4、产品C的市场竞争对手是谁?他们
这是精心整理的商品数据化运营应用场景和分析工具模型了。商品运营是很多公司的核心工作,也就是说,如何把产品快速高效地卖出去。数据始终贯穿其中,从销售预测到库存管理、从商品结构优化到动销管理、从捆绑销售到关联组合。
进入本世纪以来,我国通讯产品得到了飞速发展,其技术先进,价格便宜, 深受世界各国和地区尤其是非洲国家的欢迎。某通讯公司在非洲的多个国家深耕多年,产品与服务遍布整个非洲大陆。为了更好地了解公司的销售情况,采用产品的销售额和利润数据,对其盈利能力进行分析和预测,给决策人员提供分析报告,以便为非洲各国提供更好的产品销售策略和服务。
”销售订单表”记录了销售情况,每一张数据表示哪位顾客、在哪一天、哪个网点购买了什么产品,购买的数量是多少,以及对应产品的零售价
“数据助力业务”大号口喊了很多年,可一提到数据分析,人们习惯性的依然讲的是:excel,python,sql,依然是数据清洗、数据计算、可视化。到底业务部门需要啥样的数据分析,很少有人认真讨论。今天我们就拿销售举个例子,具体看看到底啥样的数据分析有用。
有同学问“老师,我去面试,被评价为:没有数据分析思维。他们说我偏向销售管理,而不是销售分析。老师我不明白,销售管理和分析区别是啥?”
Origin软件是一款功能强大的科学数据分析和可视化工具,广泛应用于各种领域的数据处理和分析。该软件不仅拥有丰富的功能,还具有很高的易用性和灵活性,在数据分析、建模和可视化方面可以满足用户的不同需求。
本文旨在给为大数据革命性改变市场营销和销售的众多趋势做一个概述, 其中综合了十个有关报告,介绍了十个大数据在如今的市场营销和销售策略中的应用。其中增长很快的一个领域就是定价:管理价格以及通过销售网络传播和优化定价。在有大数据算法和先进的分析技术的今天,为给定的产品或服务实现价格优化越来越不在话下。就连在不是那么有弹性的大宗商品驱动行业中,简化日常定价决策也已经是非常常见的了。 ◆ ◆ ◆ 大数据对市场营销和销售的巨大贡献 当前大数据可以辅助销售的方面包括:提高潜在客户的质量,提高销售机会数据的质量,提
Tableau 让人们看到数据的美,以及无限探索数据真相的可能。简便、快速地创建可视化分析视图,并通过仪表板和数据进行交互,是 Tableau 的拿手好戏。
近年来,数据仓库技术在信息系统的建设中得到了广泛应用,有效地为决策提供了支持。2004年6月,本人所在单位组织开发了财务管理决策系统,该系统主要是使高层领导掌握企业的经营状况及进、销、存情况,分析市场趋势。 本文通过对财务数据的分析,结合数据仓库开发原理,完成对财务数据仓库的数据组织,介绍了财务数据仓库的设计和实现方法方法。财务数据仓库的设计歩骤主要是逻循数据库设计的过程,为分概念模型的设计、逻辑模型设计、物理模型设计和数据仓库生成等几个阶段。 目前,该项目已顺利上线,领导反映良好。在该项目中,本人担任系统分析师职务,主要负责系统架构设计和数据仓库的设计工作。
点击标题下「大数据文摘」可快捷关注 导读:对Linkedin商业数据分析部门而言,大数据分析不是什么高高在上、复杂枯燥的工作,而是一门化繁为简、高效实用的艺术。 在大数据时代,商业数据分析部门对一个公司的重要意义不言而喻。目前,很多公司的数据分析部门采用的都是“分析放在报表之上”的分析方法,即每天产出非常繁琐、复杂、海量、事无巨细的分析报告,但这些分析报告的可理解性和可执行性并不强。而Linkedin作为一个典型的数据驱动的公司,在进行数据分析时却反其道而行之,采用了“报表放在分析之上”的方法,化繁为简,
本篇文章是以一个案例的方式呈现一些数据分析相关知识。涉及详细的分析思路及多种分析方法,如多维度拆解、假设检验、相关性分析、回归分析,适用问题场景是:如何把有限的资源投放到有效的地方才能发挥出最好的效果(比如商品价格和满意度对新增用户同时有影响,这时重点关注哪个)。通过本文的学习,相信你能积累一些解决实际问题的经验。
以下是一家B2C电子商务网站一周销售数据,该网站主要用户是办公室女性,销售额主要集中在5款产品上,如果你是分析师:
选取公司某季度的新品完整销售数据(下表为虚拟样表),比方2019年春季产品从2018年12月到2019年6月的销售记录。
最近学习了Python数据分析的一些基础知识,就找了一个药品数据分析的小项目来练一下手。
本文主要讲述数据挖掘分析领域中,最常用的四种数据分析方法:描述型分析、诊断型分析、预测型分析和指令型分析。
现在总结本节,重点讲了“销售漏斗”,那么SAP CRM最佳业务实践对应的是: C67 管道性能管理 管道性能管理 (PPM) 是一种高度互动的分析应用程序,用于帮助销售经理计划配额和管理管道活动以实现目标。 通过管道分析在上下文中显示机会数据,使您可以轻松识别差异和关键机会,从而及时解决问题。销售经理可以对机会进行排序、重新分配或修改,以便立即采取行动并帮助销售员工将工作重心放在合适的交易上。模拟功能提供运行假设业务情景的能力并对结果进行可视化,而不会影响基础数据。 销售经理可以在以下页面中对机会进行监控和
导读:对Linkedin商业数据分析部门而言,大数据分析不是什么高高在上、复杂枯燥的工作,而是一门化繁为简、高效实用的艺术。 在大数据时代,商业数据分析部门对一个公司的重要意义不言而喻。目前,很多公司的数据分析部门采用的都是“分析放在报表之上”的分析方法,即每天产出非常繁琐、复杂、海量、事无巨细的分析报告,但这些分析报告的可理解性和可执行性并不强。而Linkedin作为一个典型的数据驱动的公司,在进行数据分析时却反其道而行之,采用了“报表放在分析之上”的方法,化繁为简,以最快的速度在大数据金矿中发掘出最
帕累托法则俗称80/20法则,即约80%的结果是由该系统中约20%的变量产生的。例如,20%的客户贡献了80%的收入,20%的产品贡献了80%的销售等等,意在帮助我们抓住工作中的关键事项。那么如何快速的进行帕累托分析?本文分别介绍下帕累托分析在Excel和Power BI desktop当中的应用。
作为国内领先的家电制造企业,在其20多年的发展过程中,创造了无数辉煌的成果,多款产品销量排名全球前列。
在数据科学和分析领域,了解数据的基本统计值是至关重要的。Python这个强大而灵活的编程语言为我们提供了丰富的工具和库,使得计算数据的基本统计值变得异常简便。无论是均值、中位数、标准差还是其他重要的统计指标,Python都能够以清晰而高效的方式满足我们的需求。
市场经济在不断发展、走向成熟的过程中,也使得市场结构和要素变得愈发复杂。营销一直是企业的必需品,其理念和方法也在不断变化。
领取专属 10元无门槛券
手把手带您无忧上云