数据分析的的最终呈现的形式是数据分析报告,我们通过数据的数透,数据的汇总,在通过数据的可视化数据仪表盘,然后对数据图表结合公司业务和发展进行分析,最终以PPT或者WPRD的形式进行数据报告的呈现,在这些工作中,对大家来说,可能做数据报告比较化时间,我无数次听很多HR的小伙伴在群里说秋季度年度数据分析报告的模板。你下载过来的模板几乎是没用的,因为每个公司的情况不一样,你肯定是需要进行修改个更新,但是如果你不懂数据分析报告的设计和一些EXCEL的数据技能,你就不能做出一个很好的数据报告。
数据透视表是一个用来总结和展示数据的强大工具。pandas提供了pivot_table()函数以快捷地把DataFrame转换为透视表。
解决思路:首先明白希望结果是以什么样的方式展示,根据本例要求可以用产品名称作列标题,还款期数做行标题,行列交叉的位置就是贷款金额,并对行列进行合计。此时用到数据透视图可以一举解决以上问题。
在薪酬分析的关键指标中,其中有一个指标是 岗位薪酬竞争力,那什么是岗位薪酬竞争力,如何做岗位竞争力分析呢?
很多伙伴都希望快速理解 Power BI 以及 DAX 的精髓,以便可以快速工作,但往往被很多程序员误导必须要学习编程。还有很多程序员看了大量图书,在自我总结,希望可以提纲挈领地找到自助商业智能分析框架或者密码。在下,也是其中一员,在回答自己和伙伴的各种疑问的过程中,在积累中有所感悟,将这些分享给你,也许可以帮助有缘人打通,快速领略模型驱动的自助商业智能分析之妙。
微软用几年的弯路摸索出自助商务智能的最终产品路线,PowerBI 自然而然地来了。另外,如果您正从零(或者具备一定Excel基础)开始希望学习自助BI,也可以对照看目前所处的位置以更清晰学习上升的路线。
本文为简书作者傲看今朝原创,CDA数据分析师已获得授权 ”智能表格“在Excel中就是叫表格,恐怕是Excel当中最不起眼最受人忽视,却极其实用的功能之一,可以1s让你的统计表变为高大上的模板。那么它都具有哪些神奇的技巧呢?今天我将带领大家扒一扒这个功能,以期能够帮助大家提高工作的效率。 首先,智能表格这个功能在哪里呢?它的位置也是非常不起眼的,就在插入选项卡下,”数据透视表“旁边,因此创建表格的方法就是选中一个数据区域,单击插入,单击”表格“,根据实际情况勾选”数据包含标题“,单击确定。我们就可以普通的数
随着大数据分析在行业里的应用,很多企业开始追寻企业内部数据化的转型,在企业内部数据化转型的同时,内部的各个部门都要追随企业的脚步进行转型,对于人力资源部门我们如何在部门内部进行数据化的转型和落地,这是现阶段很多HR面临的问题。
每到月底季度底都是数据报告汇报的高峰期,各种部门数据的汇总报告、监控报告、经营报告。
今天分享一篇来自于李启方老师(公众号:数据分析不是个事儿)关于数据分析师求职面试经验帖,以下为分享原文:
昨晚在CPDA微课堂做了场直播,聊了一个终极问题,也是很多人在关注的话题。我把内容整理下来供读者们阅读、质疑和思考。(全文长6000多字)
大多数数据科学家可能会赞扬Pandas进行数据准备的能力,但许多人可能无法利用所有这些能力。操作数据帧可能很快会成为一项复杂的任务,因此在Pandas中的八种技术中均提供了说明,可视化,代码和技巧来记住如何做。
在流动数据分析报表的基础上,我们要对人员流动模块的关键指标做数据建模,在人员流动模块的数据建模仪式上我们选择了数据仪表盘的形式。所以要人员流动数据表的各个关键指标做数据透视表和数据透视图。
在人力资源各个模块的数据分析中,我们对各模块的关键指标进行数据透视表的建模,再对透视表做数据透视图,最终生成数据仪表盘来进行数据的分析。在整个模型搭建完成后,很多同学会问,如果我们后期在原始数据表增加了,那在透视表和仪表盘上的数据会不会自动更新。因为如果不会自动更新的话,我们没增加一列数据,都要去手动的更改数据源,就会非常的麻烦,所以今天我们来分享下如何实现透视表中的数据自动更新。
在前端开发领域,表格一直都是一个高频使用的组件,尤其是在中后台和数据分析场景下。但当一屏展示数据超过1000条数据记录时,会出现浏览器卡顿等问题,严重影响客户体验。为解决这些性能问题,不少组件也提出了相关的解决方案,以ElementPlus为例,提出了虚拟化表格的概念来流畅的展示更多的数据,但该功能目前仍在测试中,投入生产环境可能会有一定的风险,因此本文不做更多的介绍,大家有兴趣可以参考虚拟化表格。
在年度的薪酬数据分析中,我们会从年度的薪酬数据记录表中计算各个层级的中位值和最大值,最小值,通过最大最小值来进行薪酬带宽的计算,年度的薪酬数据记录表是由月度的薪酬数据构成的,所以我们就需要从月度的薪酬表里来完成各层级薪酬中位值数据的计算,并完成该数据能根据原始数据表的数据更新而更新。
在我们以往的人力资源数据分析课程中,我们都是以单表的形式来对某个模块进行数据分析,数据的来源也只是来源于某个模块的单张数据表,但是人力资源的各个模块其实是一个体系化的存在,我们在分析某个模块的时候,其实一定会跟另外一个模块的数据进行关联。
如果让我来讲的话,BI工具都是很简单的,会一个就会很多了。两小时入门power bi已经算是很慢了,其他bi工具,比如fine bi,可能十分钟足矣。
文章背景: 透视列(Pivot)和逆透视列(Unpivot)是在Excel当中经常使用的一对数据聚合和拆分方法,在Power BI中也提供了同样的功能。
昨天,发布了文章《你可能从来没用透视表干过这件事,太有意思了!》,其中用透视表实现了月历的显示方式,并且提到,“月历型”报表的问题,众多朋友表示非常期待。
经常做报表的小伙伴对数据透视表应该不陌生,在excel中利用透视表可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。
一般来说,在各系统里导出的数据,在导出数据的时候,已经对导出行为进行了权限管控,如甲员工只能导广州区数据,乙员工只对导深圳数据,他们的主管可以导华南区的数据等等。理想的场景是各人使用各自的权限导出所需的数据作分析。
导语:数据对比是日常工作中经常要做的事情,有时只是简单的1列,有时则是很多列,但无论要对比的数据有多少列,逆透视下来后,不就是都是一列了吗?当然,因为列多了,要处理的细节和步骤也自然会多一些。
在薪酬模块的数据分析中,我们经常要对层级和岗位的薪酬数据进行各个分位值的计算,但是由于公司架构的变动,我们层次和岗位也都会变动,一旦这些做了变动,我们如何快速的自动能调整各个层级的分位值数据呢,以前我们的方法是对原始的数据表进行数据透视表,然后在透视表中进行筛选,再做数据的各个分位值计算
话说,数据透视表是Excel里超级好用的数据分析功能!君不见,前天我发文章《别傻了!PQ都没学会,VBA都学不来,你能学好Python处理Excel?》后,有朋友留言,千回百转,回到透视表……
小勤:前面你的很多个关于PowerQuery的内容里都涉及到逆透视,这到底是什么意思呢?这个概念一直觉得似懂非懂的,有没有简单点的语句总结一下?
小勤:好像是算知道的,一个一对一,一个一对多?最好是都能讲一下,感觉有点power query 基础操作的东西会用,但对概念还有点似懂非懂,这样导致东西一变就抓瞎了,现在只会照葫芦画瓢,葫芦稍微动一下就不行了。
在做薪酬的数据分析过程中,我们都会用数据透视表来对薪酬的结构进行分析,我们今天就来讲讲如何通数据透视来对薪酬的结构做分析。
从零搭建微信公众号数据分析体系:如何用纯Excel搭建一个视觉效果堪比BI看板的大屏
最近疯狂被一个Excel的BI风格模板刷屏,好奇下载看了看,其实不难,这就教你怎么做~
今天要跟大家分享的内容是数据透视表多表合并——字段合并! 因为之前一直都没有琢磨出来怎么使用数据透视表做横向合并(字段合并),总觉得关于表合并绍的不够完整,最近终于弄懂了数据透视表字段合并的思路,赶紧
口罩的整条产业链都变得炙手可热,口罩、口罩机、炒熔喷布、聚丙烯等等相关企业的业务数据往往都是去年的几倍。
大海:我知道了。你露底了。呵呵。你直接把数据透视表发出去,忘了数据透视表是可以双击出明细的吗?
以前学习 Python 的 pandas 包时,经常到一些 excel 的论坛寻找实战机会。接下来我会陆续把相关案例分享出来,还会把其中的技术要点做详细的讲解。
分析师面临的普遍问题是,无论从哪里获得数据,大部分情况都是一种不能立即使用的状态。因此,不仅需要时间把数据加载到文件中,还得花更多的时间来清洗它,改变它的结构,以便后续做分析的时候能更好的使用这个数据。
要讲怎么在 Sql 中做透视表,我们还是先看看什么是透视表,其实透视表的核心就是按照行列同时分组,然后对分组后的值进行某种汇总运算。
复杂问题需要很多道工序,涉及到与多个人进行沟通,人的注意力没法持续关注,导致很容易忘掉很多重要步骤。像这种问题就要用到项目管理工具,在重要的节点上,来检查自己是否遗漏了重要的环节。
> 经常听别人说 Python 在数据领域有多厉害,结果学了很长时间,连数据处理都麻烦得要死。后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas
上篇推文《从【中国式复杂报表】谈设计逻辑》中我们提到,中国式复杂报表作为高度复杂化的产物,不适合进一步用作数据源。但实际工作中,难免遇到以类似复杂表格作为数据源的情况。比如从国家统计局下载数据的表单,就是一个初级版的复杂报表。我们可以看到,表头分了两个层级,且子层级含有合计数。列方向上也有合计(全国)。本文将来一步一步介绍,如何清洗复杂报表数据源。
继续解决Q群小伙伴提出的问题,Excel如何快速统计各销售人员的销售总金额?题目问得好像是个销售问题,其实针对各种分类汇总的数据统计。这次用透视表的方法给大家分享一下快速统计的方法。
大海:的确,直接基于普通数据源进行数据透视,数据增加的情况下,数据透视表是没办法识别到新的数据的。
小勤:那有什么意义?反正我放了值进去都会起作用的,自然就变成了其相对应的关系了,干嘛不直接在拉字段到行字段的时候就限制好呢?
今天我们来分享一个月度的薪酬数据分析的案例,首先我们来看下面这张薪酬数据表,这是来自于一家零售行业的月度薪酬数据表,在薪酬的字段上包含了薪酬类别和员工考核的数据,这些字段都是一般企业的日常的薪酬数据,针对下面这张表,我们如何来做月度的数据分析,接下来我们和大家做这个数据分析过程的分享。
本系列文章基于Superset 1.3.0版本。1.3.0版本目前支持分布,趋势,地理等等类型共59张图表。本次1.3版本的更新图表有了一些新的变化,而之前也一直没有做过非常细致的图表教程。
大海:就在菜单里点两下就好,比如不要分类汇总了,直接在菜单【数据透视表工具】-【设计】里:
领取专属 10元无门槛券
手把手带您无忧上云