必须牢记的是,涉及数据帧的算法首先应用于数据帧的列,然后再应用于数据帧的行。 因此,数据帧中的列将与单个标量,具有与该列同名的索引的序列元素或其他涉及的数据帧中的列匹配。...对于分层索引,我们认为数据帧中的行或序列中的元素由两个或多个索引的组合唯一标识。 这些索引具有层次结构,选择一个级别的索引将选择具有该级别索引的所有元素。...然后,我们为MultiIndex的每一行分配采用这些级别中的哪个级别。 因此,此第一列表的每个零指示值a,此列表的每个零指示值b。 然后第二个列表中的alpha为零,beta为。...在第三列表中,为零,2为零。 因此,在将midx分配给序列索引后,最终得到该对象。 创建MultiIndex的另一种方法是直接在创建我们感兴趣的序列时使用。...我诚挚地邀请您探索绘图方法,不仅是 Pandas 的绘图方法(我提供了许多示例的文档链接),而且还探讨了 Matplotlib。 总结 在本章中,我们从索引排序开始,并介绍了如何通过值进行排序。
我将以 2018 年 ACT 数据为例: ? 在预览了其他数据的前五行之后,我们推断可能存在一个问题,即各个州的数据集是如何存入的。...为了与当前的任务保持一致,我们可以使用 .drop() 方法删除多余的列,如下所示: ? 现在所有的数据都具有相同的维度! 不幸的是,仍有许多工作要做。...为了合并数据而没有错误,我们需要对齐 “state” 列的索引,以便在数据帧之间保持一致。我们通过对每个数据集中的 “state” 列进行排序,然后从 0 开始重置索引值: ?...最后,我们可以合并数据。我没有一次合并所有四个数据帧,而是按年一次合并两个数据帧,并确认每次合并都没有出现错误。下面是每次合并的代码: ? 2017 SAT 与 ACT 合并的数据集 ?...使用 Pandas 中的 pd.to_csv() 方法: ? 设置 index = False 保存没有索引值的数据。 是时候可视化呈现数据了!
引言在数据分析和处理中,Pandas 是一个非常强大的工具。它提供了灵活的数据结构和丰富的操作方法,使得数据处理变得更加简单高效。其中,对数据的列名和索引进行重命名是常见的需求之一。...本文将从基础概念出发,逐步深入探讨如何使用 Pandas 对列名和索引进行重命名,并介绍一些常见问题、报错及解决方案。...基础概念在 Pandas 中,DataFrame 是最常用的数据结构之一,它类似于表格,由行和列组成。每一列都有一个名称(即列名),每一行有一个索引(默认是数字索引)。...索引重命名索引是对每一行数据的标识,默认情况下是递增的整数索引。但有时我们需要自定义索引,使其更具意义。同样地,Pandas 提供了多种方式来重命名索引。...处理缺失值如果数据中存在缺失值,在重命名时可能会遇到意外情况。
2 数据帧操作 在本节中,我将展示一些关于Pandas数据帧的常见问题的提示。 注意:有些方法不直接修改数据帧,而是返回所需的数据帧。...要直接更改数据帧而不返回所需的数据帧,可以添加inplace=true作为参数。 出于解释的目的,我将把数据框架称为“数据”——您可以随意命名它。...在不知道索引的情况下检索数据: 通常使用大量数据,几乎不可能知道每一行的索引。这个方法可以帮你完成任务。因此,在因此,在“数据”数据框中,我们正在搜索user_id等于1的一行的索引。...当然,如果愿意的话,您可以让它们保持原样,但是如果您想添加值来代替空值,您必须首先声明哪些值将被放入哪些属性中(对于其空值)。 所以这里我们有两列,分别称为“标签”和“难度”。...让我用一个例子来演示如何做到这一点。我们有用户用分数解决不同问题的历史,我们想知道每个用户的平均分数。找到这一点的方法也相对简单。
例如,以下内容返回温度差的平均值: Pandas 数据帧 Pandas Series只能与每个索引标签关联一个值。 要使每个索引标签具有多个值,我们可以使用一个数据帧。...这些列是数据帧中包含的新Series对象,具有从原始Series对象复制的值。 可以使用带有列名或列名列表的数组索引器[]访问DataFrame对象中的列。...它表示单个数据类型的一维类似于数组的值集。 它通常用于为单个变量的零个或多个测量建模。 尽管它看起来像数组,但Series具有关联的索引,该索引可用于基于标签执行非常有效的值检索。...代替单个值序列,数据帧的每一行可以具有多个值,每个值都表示为一列。 然后,数据帧的每一行都可以对观察对象的多个相关属性进行建模,并且每一列都可以表示不同类型的数据。...当索引值的意义不大并且您只希望将具有顺序递增的整数的级联数据用作索引时,这很有用: [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lFEXN2Dm-1681365384146
准备 此秘籍将数据帧的索引,列和数据提取到单独的变量中,然后说明如何从同一对象继承列和索引。...当像上一步那样将数字列彼此相加时,pandas 将缺失值默认为零。 但是,如果缺少特定行的所有值,则 Pandas 也会将总数也保留为丢失。...准备 您需要熟悉所有 Pandas 数据类型以及如何访问它们。 第 1 章,“Pandas 基础”中的“了解数据类型”秘籍具有包含所有 Pandas 数据类型的表。...any方法再次链接到该布尔结果序列上,以确定是否有任何列缺少值。 如果步骤 4 求值为True,则整个数据帧中至少存在一个缺失值。 更多 电影数据集中具有对象数据类型的大多数列都包含缺少的值。....jpeg)] 请注意,前面的数据帧中的第三,第四和第五行中的所有值是如何丢失的。
检查索引对象 如第 1 章,“Pandas 基础”中所讨论的,序列和数据帧的每个轴都有一个索引对象,用于标记值。 有许多不同类型的索引对象,但是它们都具有相同的共同行为。...它接受所有列名并转置它们,因此它们成为新的最里面的索引级别。 请注意,每个旧列名称仍如何通过与每个状态配对来标记其原始值。3 x 3数据帧中有 9 个原始值,这些值被转换为具有相同数量值的单个序列。...原始的第一行数据成为结果序列中的前三个值。 在步骤 2 中重置索引后,pandas 将我们的数据帧的列默认设置为level_0,level_1和0。...在数据帧的当前结构中,它无法基于单个列中的值绘制不同的组。 但是,第 23 步显示了如何设置数据帧,以便 Pandas 可以直接绘制每个总统的数据,而不会像这样循环。...默认情况下,merge尝试对齐每个数据帧中具有相同名称的列中的值。 但是,您可以通过将布尔参数left_index和right_index设置为True来选择使其与索引对齐。
数据探索和预处理是任何数据科学或机器学习工作流中的重要步骤。在使用教程或训练数据集时,可能会出现这样的情况:这些数据集的设计方式使其易于使用,并使所涉及的算法能够成功运行。...它可以通过调用: msno.bar(df) 在绘图的左侧,y轴比例从0.0到1.0,其中1.0表示100%的数据完整性。如果条小于此值,则表示该列中缺少值。 在绘图的右侧,用索引值测量比例。...接近0的值表示一列中的空值与另一列中的空值之间几乎没有关系。 有许多值显示为的列比较完整。 LITHOFACIES, GR, GROUP, WELL, 和 DEPTH_MD 都归为零,表明它们是完整的。...这可以通过使用missingno库和一系列可视化来实现,以了解有多少缺失数据存在、发生在哪里,以及不同数据列之间缺失值的发生是如何关联的。
name属性在将序列对象组合到数据帧结构等任务中很有用。 使用标量值 对于标量数据,必须提供索引。 将为尽可能多的索引值重复该值。...默认行为是为未对齐的序列结构生成索引的并集。 这是可取的,因为信息可以保留而不是丢失。 在本书的下一章中,我们将处理 Pandas 中缺失的值。 数据帧 数据帧是一个二维标签数组。...使用ndarrays/列表字典 在这里,我们从列表的字典中创建一个数据帧结构。 键将成为数据帧结构中的列标签,列表中的数据将成为列值。 注意如何使用np.range(n)生成行标签索引。...,创建的数据帧具有基于整数的行索引。...,将NaN值替换为原始组中的组均值,会使该组均值在转换后的数据中保持不变。
行和列都有索引,它是数据在 DataFrame 中位置的数字表示。您可以使用 DataFrame 的索引位置从特定行或列中检索数据。默认情况下,索引号从零开始。您也可以手动分配自己的索引。...索引不被视为一列,您通常只有一个行索引。行索引可以被认为是从零开始的行号。...查看突出显示的索引,您可以看到行的顺序不同。这是因为quicksort不是稳定的排序算法,而是mergesort。 注意:在 Pandas 中,kind当您对多个列或标签进行排序时会被忽略。...当您对具有相同键的多条记录进行排序时,稳定的排序算法将在排序后保持这些记录的原始顺序。因此,如果您计划执行多种排序,则必须使用稳定的排序算法。...默认情况下,此参数设置为last,将NaN值放置在排序结果的末尾。要改变这种行为,并在你的数据帧先有丢失的数据,设置na_position到first。
这个类在概念上类似于pandas.Categorical,它将字符串数组表示为索引数组,指向一个(较小的)唯一字符串值数组。...现在,当到达可用数据末尾时,不再抛出通用异常,而是抛出一个命名异常并捕获它,以便交易模拟循环可以跳过,因为不需要计算下一个市场收盘。 在交易日历中修复 pandas 索引。...该类在概念上类似于pandas.Categorical,它将字符串数组表示为索引数组,这些索引指向一个(较小的)唯一字符串值数组。...这个类在概念上类似于 pandas.Categorical,它将字符串数组表示为索引数组,索引指向一个(较小的)唯一字符串值数组。...现在不再是在数据可用性结束时抛出通用异常,而是抛出一个命名的异常并捕获它,以便交易模拟循环可以跳过,因为在结束时不需要下一个市场收盘。 修正交易日历中的 pandas 索引。
现在,我们将人造卫星的尺寸缩小为焦点形状的一半,将其定位在其上方一个单位,然后使其向上移动。 ? 还需要为卫星赋予颜色,就像为焦点形状赋予颜色一样。...使其相对于焦点形状从0.1到1。 ? ? (卫星配置,相对缩放比) 在这个范围内使用一个随机值,而不是我们目前使用的固定的0.5。 ?...我们可以通过检查偏移矢量的平方大小是否小于1来检测到它。但是由于数值精度,我们应该检查一个较小的值,所以我们改用0.1。它将非常接近1或正好为零。...我们也可以复制FloatRangeDrawer来为新的整数范围创建一个变体,但是现在不需要这样做。FloatRangeDrawer中的代码不关心最小值和最大值的类型,只关心它们是否存在。...我在这里就不处理了,因为我心里没有卫星数量的限制。即使是负值也是有用的,因为它们可以用来降低卫星出现的可能性。
教课理念 有个人可能会问 NumPy-Pandas-SciPy 不都是免费资源吗,为什么还要花钱来上课?没错,我也是参考了大量书籍、优质博客和付费课程中汲取众多精华,才打磨出来的前七节课。...听着很绕口,但这样理解数组之后很多问题都可以轻易理解,比如: 高维数组的转置 数组的重塑和打平 不同维度上的整合 我为上面那句话画了三幅图,注意比较数组“想象中的样子”、“打印出的样子”和“内存里的样子...此外 Pandas 主要是为异质 (heterogeneous) 的表格 (tabular) 数据而设计的,而 NumPy 主要是为同质 (homogeneous) 的数值 (numerical) 数据而设计的...DataFrame 数据帧可以看成是 数据帧 = 二维数组 + 行索引 + 列索引 在 Pandas 里出戏的就是行索引和列索引,它们 可基于位置 (at, loc),可基于标签 (iat...终止条件:任何金融产品都是支付函数,可设为 PDE 的终止条件 边界条件:很多金融产品的支付在标的很大或很小时会确定比如看涨期权 在标的为零时支付为零 在标的很大时近似为一个远期。
因为我们的具体目标是向你展示下面这些: 1、创建一个日期范围 2、处理时间戳数据 3、将字符串数据转换为时间戳 4、数据帧中索引和切片时间序列数据 5、重新采样不同时间段的时间序列汇总/汇总统计数据 6...df[df.index.day == 2] } 顶部是这样的: 我们还可以通过数据帧的索引直接调用要查看的日期: df['2018-01-03'] } 在特定日期之间选择数据如何df['2018-01-...04':'2018-01-06'] } 我们已经填充的基本数据帧为我们提供了每小时频率的数据,但是我们可以以不同的频率对数据重新采样,并指定我们希望如何计算新采样频率的汇总统计。...2、仔细跟踪时区-让其他人通过查看您的代码,了解您的数据所在的时区,并考虑转换为UTC或标准值,以保持数据的标准化。...我建议您跟踪所有的数据转换,并跟踪数据问题的根本原因。 5、当您对数据重新取样时,最佳方法(平均值、最小值、最大值、和等等)将取决于您拥有的数据类型和取样方式。要考虑如何重新对数据取样以便进行分析。
1.表现,速度以及记忆效率 正如我们所知,pandas是使用numpy建立的,并非有意设计为数据帧库的后端。因为这个原因,pandas的主要局限之一就是较大数据集的内存处理。...作者代码段 请注意在引入 singleNone 值后,点如何自动从 int64 更改为 float64。 对于数据流来说,没有什么比错误的排版更糟糕的了,尤其是在以数据为中心的 AI 范式中。...在 pandas 2.0 中,我们可以利用 dtype = 'numpy_nullable',其中缺失值是在没有任何 dtype 更改的情况下考虑的,因此我们可以保留原始数据类型(在本例中为 int64...我希望这个总结可以平息你关于pandas 2.0的一些问题,以及它在我们的数据操作任务中的适用性。 我仍然很好奇,随着pandas 2.0 的引入,您是否也发现了日常编码的重大差异!...在Medium上,我写了关于以数据为中心的人工智能和数据质量的文章,教育数据科学和机器学习社区如何从不完美的数据转向智能数据。
退出训练图案要求双方都使用PAM4调制,因此请求以及调制和预编码的状态都需要具有PAM2以外的值(“PAM4”或“PAM4带预编码”)。 零位填充 在训练图案之后立即发送两个“0”符号。...字段的值是两个系数索引的补码编码。例如,二进制值111对应于系数索引-1。 系数请求 系数请求比特用于改变由系数选择比特指定的系数的值。系数可以通过增加或减少其值或将其设置为“无均衡”来更改。...此命令集包括递增、递减、保持或将选定系数c(k)设置为0的指令,其中k=-2到1。此外,它还包括将所有系数设置为3个初始条件之一的命令。 作为响应,发送功能将状态信息中继到链路伙伴的接收功能。...归一化发送均衡器系数的变化被定义为在断言“增量”或“减量”请求之前测量的值(即coef_req为“保持”)与断言系数状态为“已更新”时的值之差。...当c(-1)和c(1)设置为0时,c(0)收到了足够的“减量”请求,使其处于最小值,c(-2)收到了充分的“增量”请求,以使其处于最大值,则c(−2)应大于或等于0.1。
(开启了动态合批的URP统计数据) 在我的例子中,SRP批处理程序和动态批处理具有相当好的性能,因为立方体网格是动态批处理的理想(网格小)对象。...另外,我们也可以在两个维度上都将枢轴设置为1,然后将位置设置为零。然后将图像组件的颜色设置为黑色,并保持其Alpha不变。 ?...因此,我们显示的FPS不是真实的帧速率,而是Unity告诉我们的。理想情况下,这些是相同的,但是正确处理是复杂的。 有一篇关于Unity如何在这方面改进的博客文章,但这并没有讲述完整的内容。...还可以通过为其赋予Min属性来将其最小值设置为零。持续时间为零将导致每帧切换到不同的功能。 ? ? (函数持续时间) 从现在开始,我们需要跟踪当前功能的激活时间,并在需要时切换到下一个功能。...可以忽略这一点,但是要与功能开关的例外时序保持合理的同步,应该从下一个功能的持续时间中减去额外的时间。我们通过从当前持续时间中减去所需的持续时间而不是将其设置为零来实现。 ?
领取专属 10元无门槛券
手把手带您无忧上云