导读 包括了适用于传统图像的数据处理和深度学习的数据处理。 介绍: 在过去几年从事多个计算机视觉和深度学习项目之后,我在这个博客中收集了关于如何处理图像数据的想法。...有时,甚至可能不需要深度学习模型,经过一些处理后一个简单的分类器可能就足够了。 最大化信号并最小化图像中的噪声使得手头的问题更容易处理。...直方图均衡化的目的是使出现频率最高的像素值均匀分布。 让我们看看下面的例子。 可以看出,上图的对比度非常低。在这种情况下,重要的是要提高对比度,使图像的特征更清晰可见。...OpenCV 提供了两种这样做的技术 —— 直方图均衡化和对比度受限自适应直方图均衡化 (CLAHE)。 应用直方图均衡化,图像的对比度确实有所提高。但是,它也会增加图像中的噪点,如下图中间所示。...这就是CLAHE 的用武之地。使用这种方法,图像被分成 m x n 网格,然后将直方图均衡应用于每个网格。可以使用交互式滑块找到理想的对比度阈值和网格大小,如下所示。
直方图均衡化 直方图均衡化将原始图像的直方图,即灰度概率分布图,进行调整,使之变化为均衡分布的样式,达到灰度级均衡的效果,可以有效增强图像的整体对比度。...(x,y)到三维 (X,Y,Z),再到另一个二维 (x’,y’) 空间的映射。...也可以实现水印的叠加。 图像减法 实现背景消除和运动检测。 图像缩放 图像放大 最邻近插值法,取最近点的灰度值,计算量小,但精确度不高,并且可能破坏图像中的线性关系。...双线性插值法 使用新的像素点 (x′,y′)(x',y')(x′,y′) 最邻近的四个像素值进行插值计算,假设为 (i,j),(i+1,j)(i,j+1),(i+1,j+1)(i,j),(i+1,j)...锐化 图像锐化与图像平滑是相反的操作,锐化是通过增强高频分量来减少图像中的模糊,增强图像细节边缘和轮廓,增强灰度反差,便于后期对目标的识别和处理。锐化处理在增强图像边缘的同时也增加了图像的噪声。
在这篇文章中,我将介绍如何从视频中查找并标记车道。被标记的车道会显示到视频上,并得到当前路面的曲率以及车辆在该车道内的位置。首先我们需要对图像进行相机失真校正,这里就不作详细介绍了。...总梯度的大小由以下公式给出: 而渐变的方向是: 让我们尝试分离出“幅度”和“梯度方向”,而不是采用整体梯度。在某些情况下,这可以提供更大的优势。车道线,如果车道不太弯曲,则与图像中的垂直线更接近。...采取单独的x、y梯度大小或方向,都有相应的优点。我们可以应用不同的阈值以达到期望的结果。...线查找方法:直方图中的峰 在对道路图像应用校准,阈值和透视变换后,大家应该拥有一个二进制图像,其中车道线清晰可见。但是仍然需要明确确定哪些像素是线条的一部分,哪些像素属于左线条,哪些像素属于右线条。...我们可以在曲线的局部区域上绘制一个与附近点非常契合的圆。 ? 曲线y = f(x)的任意点x的曲率半径的公式为 ?
[counts,x]=imhist(J);:使用imhist函数计算直方图J的灰度级计数和对应的灰度级值,并将计数存储在变量counts中,灰度级值存储在变量x中。...5.2.2 什么是数字图像的灰度分布直方图?如何进行数字图像的直方图均衡化和规定化处理?试写出相应的程序设计步骤。...动态范围:直方图可以反映图像的动态范围,即图像中灰度级别的宽度。动态范围越宽,图像中灰度级别的变化范围就越大,表示图像具有更丰富的细节和对比度。 图像分割:灰度分布直方图在图像分割任务中具有重要作用。...例如,在图像增强任务中,可以根据直方图的分布情况选择合适的增强算法和参数,以获得更好的图像质量和视觉效果。 2.如何进行数字图像的直方图均衡化和规定化处理?试写出相应的程序设计步骤。...解释直方图均衡化如何通过重新分配像素灰度级,使得图像的灰度级更均匀分布,进而提高视觉效果,通过对比直方图验证其效果。
在 Seaborn 中,我们使用 sns.lineplot (x, y, data=None) 函数。其中 x、y 是 data 中的下标。...直方图 直方图是比较常见的视图,它是把横坐标等分成了一定数量的小区间,这个小区间也叫作“箱子”,然后在每个“箱子”内用矩形条(bars)展示该箱子的箱子数(也就是 y 值),这样就完成了对数据集的直方图分布的可视化...蜘蛛图 蜘蛛图是一种显示一对多关系的方法。在蜘蛛图中,一个变量相对于另一个变量的显著性是清晰可见的。 假设我们想要给王者荣耀的玩家做一个战力图,指标一共包括推进、KDA、生存、团战、发育和输出。...那该如何做呢? 这里我们需要使用 Matplotlib 来进行画图,首先设置两个数组:labels 和 stats。他们分别保存了这些属性的名称和属性值。...再用 ax.plot 和 ax.fill 进行连线以及给图形上色。最后我们在相应的位置上显示出属性名。
图8.非模糊图像 如果未实现GaussianBlur函数,则噪声在图8中清晰可见。这些噪声对于我们的项目可能不是问题,但它们将对不同项目和情况下的培训成功产生重大影响。...图16. meanBlur函数应用的图像 在图14中检查图像时,虚线在某些单词下方清晰可见。在这种情况下,光学字符识别引擎可能会误读某些单词。图16中位数模糊处理的结果是,这些虚线消失了。...让我们对图19中的图像进行直方图均衡。 ? 图19.直方图值未修改的图像(原始图像) ? 图20.原始图像的直方图分布 原始图像的直方图(图19)可以在图20中看到。 图像中对象的可见性很低。...此外,在图22中完成了直方图均衡化的图像的直方图图形可以看出,在直方图均衡化之后,图20中一个区域中收集的值分布在更大的区域上。可以为每个图像检查这些直方图值。...必要时可以通过使直方图相等来提高图像质量。
在图14中检查图像时,虚线在某些单词下方清晰可见。...例如对比度差的图像的直方图值分布在狭窄的区域。 为了提高该图像的对比度,有必要将直方图值分布在很大的区域上。equalizeHist函数用于这些操作。让我们对图19中的图像进行直方图均衡。...图19.直方图值未修改的图像(原始图像) 图20.原始图像的直方图分布 原始图像的直方图(图19)可以在图20中看到。 图像中对象的可见性很低。...图像的质量和清晰度得到了提高。此外,在图22中完成了直方图均衡化的图像的直方图图形可以看出,在直方图均衡化之后,图20中一个区域中收集的值分布在更大的区域上。可以为每个图像检查这些直方图值。...必要时可以通过使直方图相等来提高图像质量。
在 Seaborn 中,我们使用 sns.lineplot (x, y, data=None) 函数。其中 x、y 是 data 中的下标。...(也就是 y 值),这样就完成了对数据集的直方图分布的可视化。...在 Matplotlib 中,我们使用 plt.hist(x, bins=10) 函数,其中参数 x 是一维数组,bins 代表直方图中的箱子数量,默认是 10。...在蜘蛛图中,一个变量相对于另一个变量的显著性是清晰可见的。这里需要使用 Matplotlib 来进行画图,首先设置两个数组:labels 和 stats。他们分别保存了这些属性的名称和属性值。...再用 ax.plot 和 ax.fill 进行连线以及给图形上色。最后我们在相应的位置上显示出属性名。
从灰度直方图中你可可以获得: 暗图像对应的直方图组成成分几种在灰度值较小的左边一侧 明亮的图像的直方图则倾向于灰度值较大的右边一侧 对比度较低的图像对应的直方图窄而集中于灰度级的中部 对比度高的图像对应的直方图分布范围很宽而且分布均匀...(直方图修正) 局部处理:计算某一输出像素值由输入图像像素的小领域中的像素值确定,这种处理称为局部处理。(灰度反转) 全局处理:图像某一像素灰度的变化与图像全部像素灰度值有关。...有损压缩:是对图像本身的改变,在保存图像时保留了较多的亮度信息,而将色相和色纯度的信息和周围的像素进行合并,合并的比例不同,压缩的比例也不同,由于信息量减少了,所以压缩比可以很高,图像质量也会相应的下降...附加: 1、灰度图像跟彩色图像: 灰度图像:是一个二维的灰度(亮度)函数f(x,y) 彩色图像:由三个二维灰度函数f(x,y)组成。...4-连接:2个像素p和r在V中取值且r在p的4邻域中 8-连接:2个像素p和r在V中取值且r在p的8邻域中 m-连接(混合连接):2个像素 p 和 r 在V 中取值,且满足下面条件之一即可 1、r在p的
在这篇文章中,我将介绍如何从视频中查找并标记车道。被标记的车道会显示到视频上,并得到当前路面的曲率以及车辆在该车道内的位置。首先我们需要对图像进行相机失真校正,这里就不作详细介绍了。...总梯度的大小由以下公式给出: 而渐变的方向是: 让我们尝试分离出“幅度”和“梯度方向”,而不是采用整体梯度。在某些情况下,这可以提供更大的优势。车道线,如果车道不太弯曲,则与图像中的垂直线更接近。...采取单独的x、y梯度大小或方向,都有相应的优点。我们可以应用不同的阈值以达到期望的结果。...线查找方法:直方图中的峰 在对道路图像应用校准,阈值和透视变换后,大家应该拥有一个二进制图像,其中车道线清晰可见。但是仍然需要明确确定哪些像素是线条的一部分,哪些像素属于左线条,哪些像素属于右线条。...曲线y = f(x)的任意点x的曲率半径的公式为 为了将像素值覆盖到道路单位中,使用以下转换 ym_per_pix = 30/720 xm_per_pix = 3.7 / 700 它们以米/像素为单位
y,z,λ,t) x,y,z 是空间坐标——三维图象 λ 是波长——彩色/多光谱图象 t 是时间——运动(序列)图象 I 是像素点的强度(灰度) 图像灰度级 在数字图像中,各像素点的亮度或色彩信息...像素的邻域和邻接 像素的邻域 4-邻域 :像素p(x, y)的左右上下4个像素。 D-邻域 :像素p(x, y)的4个对角邻近像素。...8-邻域 :像素p(x, y)的左、右、上、下、左上、右上、左下、右下8个像素。...q∈V,V={ , ,……}为连接的灰度值集合 连通: 若p,q∈T且存在一条由T中像素组成的从p到q的通路,则称p在T中与q连通。...图像均衡化处理后,图像的直方图是平直的,即各灰度级具有相同的出现频数,那么由于灰度级具有均匀的概率分布,图像看起来就更清晰了。 直方图规定化 直方图规定化是指借助直方图变换实现规定的灰度映射。
在项目早期阶段,通常会进行探索性数据分析(EDA)以获取对数据的理解和洞察,尤其对于大型高维的数据集,数据可视化着实有助于使数据关系更清晰易懂。...将x轴和y轴数据传递给相应数组x_data和y_data,然后将数组和其他参数传递给ax.scatter()以绘制散点图。我们还可以设置点的大小、颜色和alpha透明度,甚至将y轴设置成对数坐标。...一方面,更多的分组数能提供更详细的信息,但可能会引入数据噪声使结果偏离宏观分布;另一方面,更少的分组数能提供更宏观的数据“鸟瞰”,在不需要太多细节的情况下能更全面地了解数据整体情况。...叠加直方图 在实现叠加直方图的代码中需要设置以下几个参数: 设置水平范围,以适应两种可变分布; 根据这个范围和期望的分组数量,计算并设置组距; 设置其中一个变量具有更高透明度,以便在一张图上显示两个分布...由于箱形图是为每个组或变量绘制的,因此设置起来非常容易。x_data是组或变量的列表,x_data中的每个值对应于y_data中的一列值(一个列向量)。
在遍历数据的时候,根据离散化后的值作为索引在直方图中累积统计量,当遍历一次数据后,直方图累积了需要的统计量,然后根据直方图的离散值,遍历寻找最优的分裂点。...为了抵消对数据分布的影响,计算信息增益的时候,GOSS对小梯度的数据引入常量乘数。GOSS首先根据数据的梯度绝对值排序,选取top a个实例。然后在剩余的数据中随机采样b个实例。...接着计算信息增益时为采样出的小梯度数据乘以(1-a)/b,这样算法就会更关注训练不足的实例,而不会过多改变原数据集的分布。 GOSS的算法步骤如下: 1、根据数据的梯度绝对值将训练降序排序。...EFB算法的关键点有两个: 1、如何判定哪些特征可以进行捆绑? 2、特征如何捆绑?捆绑之后的特征值如何计算? 如何判定哪些特征可以捆绑?...特征如何捆绑? Merge Exclusive Features 算法将 bundle 中的特征合并为新的特征,合并的关键是原有的不同特征值在构建后的 bundle 中仍能够识别。
因此,objp只是一个复制的坐标数组,每当我成功检测到测试图像中的所有棋盘角时,objpoints都会附加一个副本。每个成功的棋盘检测将会在图像平面中的每个角落附加(x,y)像素位置。...有各种颜色和梯度阈值的组合来生成车道线清晰可见的二值图像。...要做到这一点,最简单的方法是调查车道线是直线的图像,并找到沿线的四个点,在透视变换之后,从鸟瞰视角使线看起来笔直且垂直。...在对道路图像进行校准,阈值处理和透视变换之后,我们应该有一个二值图像,车道线清晰可见。但是,我们仍然需要明确地确定哪些像素是线的一部分,哪些属于左边线,哪些属于右边线。...使用这个直方图,我将图像中每列的像素值相加。在我的阈值二进制图像中,像素是0或1,所以这个直方图中最突出的两个峰值将成为车道线底部x坐标的良好指标。我可以用它作为寻找线条的起点。
HOG特征是一种图像局部特征,基本思路是将图像划分为很多小的连通区域,即细胞单元Cell,然后对Cell的梯度幅值和方向进行投票统计,形成基于梯度特性的直方图。...然后进行伽马矫正,调节图像对比度,减少光照对图像的影响(包括光照不均和局部阴影),使过曝或者欠曝的图像恢复正常,更接近人眼看到的图像。 Gamma矫正公式:,其中表示图像,表示幂指数。...第一个图:x-梯度的绝对值,第二个图:y梯度的绝对值 ,第三个图:梯度的幅值,第四个图:角度。 注意到,x-梯度在垂直线触发,y-梯度在水平线触发。梯度的幅值在有密集的剧烈改变时触发。...在HOG中,每个8x8的Cell的梯度直方图本质是一个由9个数值组成的向量, 对应于0、20、40、60…160的梯度方向(角度)。...虽然不能从图像中完全消除,但是可以通过使用16×16个块来对梯度进行归一化来减少这种光照变化的影响。比如通过将所有像素值除以2来使图像变暗,那么梯度幅值将减小一半,因此直方图中的值也将减小一半。
,因为很难确定哪些设置使图表更吸引人 Matplotlib函数不能很好地处理数据流,而seaborn可以 这第二点在数据科学中很突出,因为我们经常使用数据模型。...这里,参数是x、y,数据有在X,Y轴上表示的变量和我们要分别画出来的数据点,通过图片,我们发现了views和upvotes之间的关系。...小提琴图结合了箱线图和核密度估计程序,以提供更丰富的值分布描述。四分位数值显示在小提琴内部。当色调语义参数是二值时,我们还可以拆分小提琴,这也可能有助于节省绘图空间。...使用Seaborn绘制Pointplot 另一种类型的图是pointplot,这个图指出估计值和置信区间。Pointplot连接来自相同色调类别的数据。这有助于识别特定色调类别中的关系如何变化。...我们看到了seaborn库在可视化和研究数据(尤其是大型数据集)时是如何如此有效的。我们还讨论了如何为不同类型的数据绘制seaborn库的不同函数。
数据可视化是数据科学家工作的一项主要任务。在项目早期阶段,通常会进行探索性数据分析(EDA)以获取对数据的理解和洞察,尤其对于大型高维的数据集,数据可视化着实有助于使数据关系更清晰易懂。...将x轴和y轴数据传递给相应数组x_data和y_data,然后将数组和其他参数传递给ax.scatter()以绘制散点图。我们还可以设置点的大小、颜色和alpha透明度,甚至将y轴设置成对数坐标。...一方面,更多的分组数能提供更详细的信息,但可能会引入数据噪声使结果偏离宏观分布;另一方面,更少的分组数能提供更宏观的数据“鸟瞰”,在不需要太多细节的情况下能更全面地了解数据整体情况。...叠加直方图 在实现叠加直方图的代码中需要设置以下几个参数: 设置水平范围,以适应两种可变分布; 根据这个范围和期望的分组数量,计算并设置组距; 设置其中一个变量具有更高透明度,以便在一张图上显示两个分布...由于箱形图是为每个组或变量绘制的,因此设置起来非常容易。x_data是组或变量的列表,x_data中的每个值对应于y_data中的一列值(一个列向量)。
不同之处在于,分类和回归问题仅研究预测观测值Y,而因果建模需要研究treatment、instrumental variable等变量与观测值Y之间的关联。...直方图算法:直方图的主要思想是将连续特征离散化到最大k个桶中,同时构造一个宽度为k的直方图。在遍历样本时,以离散化值为索引在直方图中累积统计量。...样本转换模块:负责采样构建直方图与特征离散化,上文中单维treatment多维treatment、工具变量、观测值y的转换也封装在此模块中。 森林生长模块:框架的核心模块,使用MapReduce实现。...avgITE = E(pred\_y(X_i,T_i=1) - pred\_y(X_i,T_i=0)) CATE = E(Y_i|T=1) - E(Y_i|T=0) 图9 预测与真实ITE量级偏差大...此外我们还融入了评估预估y与观测值Y之间的差异的指标,包括mae/mse/rmse,并将这些指标封装到二元因果效应评估组件中。
领取专属 10元无门槛券
手把手带您无忧上云