首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何使用varscan trio调用者管道samtools mileup?

VarScan Trio是一种用于检测家族遗传病变的工具,它结合了VarScan2和samtools mpileup。在使用VarScan Trio调用者管道之前,需要先安装和配置VarScan2和samtools。

以下是使用VarScan Trio调用者管道samtools mpileup的步骤:

  1. 安装和配置VarScan2和samtools:
    • VarScan2是一个用于检测单核苷酸变异和结构变异的工具,可以从VarScan官方网站(https://varscan.sourceforge.net/)下载并按照官方文档进行安装和配置。
    • samtools是一个处理SAM/BAM格式文件的工具,可以从samtools官方网站(http://www.htslib.org/)下载并按照官方文档进行安装和配置。
  • 准备输入文件:
    • 确保你有一个包含家族三代测序数据的BAM格式文件。
    • 确保你有一个参考基因组文件(FASTA格式)。
  • 运行samtools mpileup:
    • 使用以下命令运行samtools mpileup,生成pileup文件:
    • 使用以下命令运行samtools mpileup,生成pileup文件:
    • 其中,reference.fasta是参考基因组文件的路径,input.bam是输入的BAM文件的路径,output.pileup是输出的pileup文件的路径。
  • 运行VarScan2调用者管道:
    • 使用以下命令运行VarScan2调用者管道,调用家族遗传病变:
    • 使用以下命令运行VarScan2调用者管道,调用家族遗传病变:
    • 其中,<pileup>是上一步生成的pileup文件的路径,<output>是输出结果文件的路径,[options]是可选的参数,可以根据需要进行设置。
  • 解析和分析结果:
    • 根据VarScan2的输出结果,可以进行进一步的遗传病变分析和解读。

VarScan Trio的优势是可以在家族测序数据中检测家族遗传病变,有助于研究家族遗传病的发生机制和诊断。

推荐的腾讯云相关产品和产品介绍链接地址:

  • 腾讯云对象存储(COS):https://cloud.tencent.com/product/cos
  • 腾讯云容器服务(TKE):https://cloud.tencent.com/product/tke
  • 腾讯云数据库(TencentDB):https://cloud.tencent.com/product/cdb
  • 腾讯云人工智能(AI):https://cloud.tencent.com/product/ai
  • 腾讯云物联网(IoT):https://cloud.tencent.com/product/iotexplorer
  • 腾讯云移动开发(移动推送、移动分析等):https://cloud.tencent.com/product/mobile
  • 腾讯云区块链(BCS):https://cloud.tencent.com/product/bcs
  • 腾讯云元宇宙(Tencent XR):https://cloud.tencent.com/product/xr
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 文献阅读 · 变异分析流程--肿瘤基因组测序数据分析专栏

    call 突变的工具推荐使用GATK HaplotypeCaller 和 Platypus。也有基于贝叶斯统计方法的 Samtools/BCFtools 和 FreeBayes 。不同工具得到的结果的一致性通常在 90% 以上。 过滤 Artifacts 虽然从上面方法得到的突变结果准确度高达 99.9%,但是依然会由于人为因素而引入了假阳性突变。因此,得到的突变结果需要在 IGV 中进行人工手动的可视化过滤。如:低质量碱基(图 2 a),reads末端的artifacts(图 2 b),由于局部比对错误引起的插入缺失(图 2 c),strand bias artifacts(图 2 d)、低复杂度区域中的错误比对(图 2 e)等 识别de novo mutations 在人群中,de novo mutations 存在一定的频率。可以基于已经公开的数据集,如 gnomAD 进行注释和过滤。一般认为在人群中 MAF > 0.0001(也有人说是0.001),更有可能是 germline mutation。 拷贝数和结构变异 拷贝数变异 CNV 是人类遗传变异的另一种类型,与许多疾病相关,如抑郁症 autism,智力底下 intellectual disability,先天性心脏病 congenital heart disease。NGS 在临床上也有应用于 CNV 检测,相应的工具有:cn.MOPS 、CONTRA、CoNVEX、ExomeCNV、ExomeDepth 和 XHMM。如果是全基因组测序,还有检测结构变异 SV,常用的软件有 DELLY 、Lumpy 、Manta 、Pindel 和 SVMerge ,但由于二代测序的 reads 读长较短,检测 SV 仍然存在挑战性。 拷贝数变异和 SV 可以通过 IGV 进行可视化查看:

    06

    SIGCOMM2022:一种采用非流水线架构的P4网络可编程芯片-Trio

    摘要:本文介绍了Trio,一种用于瞻博(Juniper)网络MX系列路由器和交换机的可编程芯片组。Trio的架构基于一个多线程的可编程数据包处理引擎和一个分层的大容量内存系统,这使得它与基于流水线的架构有着根本的不同。Trio可以优雅地处理各种网络用例和协议的非同质包处理率,使其成为新兴网络内应用的理想平台。我们首先描述了Trio芯片组的基本构件,包括其多线程的包转发和包处理引擎。然后,我们讨论Trio的编程语言,称为微代码。为了展示Trio灵活的基于Microcode的编程环境,我们描述了两个使用案例。首先,我们展示了Trio为分布式机器学习执行网络内聚合的能力。其次,我们提出并设计了一种使用Trio的定时器线程的网络内滞留者缓解技术。我们在测试平台上使用三个真实的DNN模型(ResNet50、DenseNet161和VGG11)对这两个用例进行了原型测试,以证明Trio在执行网络内聚合的同时缓解串扰的能力。我们的评估表明,当集群中出现散工问题时,Trio的性能比目前基于流水线的解决方案高1.8倍。

    03

    满分室间质评之GATK Somatic SNV+Indel+CNV+SV(下)性能优化

    #此处是原先Manta分析SV的步骤一,生成runWorkflow.py,因为这一不步速度很快,所以串行执行 rm -f ${result}/${sn}/runWorkflow.py python ${tools.manta} \ --normalBam ${result}/${sn}NC_marked.bam \ --tumorBam ${result}/${sn}_marked.bam \ --referenceFasta ${refs.hum} \ --exome \ --callRegions /opt/ref/projects/Illumina_pt2.bed.zip \ --runDir ${result}/${sn} # 对bam文件碱基质量校正的第二步,Normal & Tumor并行处理 ${tools.gatk} ApplyBQSR \ --bqsr-recal-file ${result}/${sn}_recal.table \ -L ${refs.interval} \ -R ${refs.hum} \ -I ${result}/${sn}_marked.bam \ -O ${result}/${sn}_bqsr.bam & ​ ​ ${tools.gatk} ApplyBQSR \ --bqsr-recal-file ${result}/${sn}NC_recal.table \ -L ${refs.interval} \ -R ${refs.hum} \ -I ${result}/${sn}NC_marked.bam \ -O ${result}/${sn}NC_bqsr.bam & ​ #原先QC步骤,获取insert size,Normal & Tumor并行 ${tools.gatk} CollectInsertSizeMetrics \ -I ${result}/${sn}_marked.bam \ -O ${result}/${sn}_insertsize_metrics.txt \ -H ${result}/${sn}_insertsize_histogram.pdf & ​ ​ ${tools.gatk} CollectInsertSizeMetrics \ -I ${result}/${sn}NC_marked.bam \ -O ${result}/${sn}NC_insertsize_metrics.txt \ -H ${result}/${sn}NC_insertsize_histogram.pdf & ​ # 运行manta SV分析 python ${result}/${sn}/runWorkflow.py -m local -j ${envis.threads} & ​ # 运行cnvkit CNV分析 ${tools.cnvkit} batch \ ${result}/${sn}_marked.bam \ --normal ${result}/${sn}NC_marked.bam \ --method hybrid \ --targets ${refs.bed} \ --annotate /opt/ref/refFlat.txt \ --output-reference ${result}/${sn}_reference.cnn \ --output-dir ${result}/ \ --diagram \ -p 0 & ​ #samtools统计测序深度 ${tools.samtools} depth -b ${refs.bed} ${result}/${sn}_marked.bam > ${result}/${sn}_marked.depth & ${tools.samtools} depth -b ${refs.bed} ${result}/${sn}NC_marked.bam > ${result}/${sn}NC_marked.depth & #samtools统计比对信息 ${tools.samtools} flagstat --threads ${envis.threads} ${result}/${sn}_marked.bam > ${result}/$

    01
    领券