最近在处理数据的时候遇到一个需求,核心就是求取最大连续行为天数。 这里从数据库中导出的监测设备数据离线预警日志,需求是找出各监测对象设备掉线最长持续多久并确定其离线时长。...程序每天定时检测一次数据在线情况,很明显只有数据掉线才会向数据库中插入日志,时间并不连续,因此,本文分享一种思路来统计时间序列连续时间段和天数。...、连续掉线最长时间段等,根据需要增加过滤条件) 具体代码如下: import pandas as pd from itertools import groupby #日期-天数转换函数 def which_day...scop = l1[0] result1.append(scop) result2.append(len(l1)) #连续天数 df = pd.DataFrame...'max') res1=res[res.连续掉线天数==res.max_连续掉线天数] print(res1) 以上为本次分享全部内容,类似场景可触类旁通如:计算用户连续打卡天数、计算用户连续登录天数等
这篇文章目的梳理几个高效实用的pandas小技巧,供大家参考。 1....从剪切板中创建DataFrame pandas中的read_clipboard()方法非常神奇,可以把剪切板中的数据变成dataframe格式,也就是说直接在excel中复制表格,可以快速转化为dataframe...对连续数据进行离散化处理 在数据准备过程中,常常会组合或者转换现有特征以创建一个新的特征,其中将连续数据离散化是非常重要的特征转化方式,也就是将数值变成类别特征。...从多个文件中构建一个DataFrame 有时候数据集可能分布在多个excel或者csv文件中,但需要把它读取到一个DataFrame中,这样的需求该如何实现?...data/data_row_*.csv'))返回文件名,然后逐个读取,并且使用concat()方法进行列合并(注意这里axis=1),得到结果: 本文就到这里,pandas还有很多让人惊喜的小技巧,大家有兴趣也可以在评论区说说你的使用心得
目录 一、数据载入 二、数据清洗 (一)Pandas中缺失值的表示 (二)与缺失值判断和处理相关的方法 三、连续特征离散化 四、哑变量处理 准备工作 导入 NumPy 库和 Pandas 库。...Pandas 库将外部数据转换为 DataFrame 数据格式,处理完成后再存储到相应的外部文件中。 1、读 / 写文本文件 文本文件是一种由若干行字符构成的计算机文件,它是一种典型的顺序文件。...提取码:2yek 二、数据清洗 (一)Pandas中缺失值的表示 Pandas 表示缺失值的一种方法是使用NaN(Not a Number),它是一个特殊的浮点数;另一种是使用 Python 中的None...为: one two 0 高 1 1 低 4 2 低 6 3 高 7 4 中 8 哑变量处理后的DataFrame为: two one..._中 one_低 one_高 0 1 0 0 1 1 4 0 1 0 2 6 0 1 0
(3)读取文件方便 (4)封装了Matplotlib、Numpy的画图和计算 1.2 Pandas数据结构 Pandas中一共有三种数据结构,分别为:Series、DataFrame和MultiIndex...横向索引,叫index,0轴,axis=0 列索引,表名不同列,纵向索引,叫columns,1轴,axis=1 (1)DataFrame的创建 # 导入pandas import pandas as...# 使用Pandas中的数据结构 score_df = pd.DataFrame(score) 结果: 给分数数据增加行列索引,显示效果更佳: 增加行、列索引: # 构造行索引序列 subjects...6、高级处理-缺失值处理 在pandas中,缺失值使用NaN来标记,如下图所示: 6.1 如何处理nan 按如下步骤进行: (1)获取缺失值的标记方式(NaN或者其他标记方式) (2)如果缺失值的标记方式是...思路分析 1、创建一个全为0的dataframe,列索引置为电影的分类,temp_df 2、遍历每一部电影,temp_df中把分类出现的列的值置为1 3、求和 思路 下面接着看: 1、创建一个全为0的dataframe
开发出的库 专门用于数据挖掘的开源python库 以Numpy为基础,借力Numpy模块在计算方面性能高的优势 基于matplotlib,能够简便的画图 独特的数据结构 1.1 为什么使用Pandas...横向索引,叫index,0轴,axis=0 列索引,表名不同列,纵向索引,叫columns,1轴,axis=1 (1)DataFrame的创建 # 导入pandas import pandas as...# 使用Pandas中的数据结构 score_df = pd.DataFrame(score) 结果: 给分数数据增加行列索引,显示效果更佳: 增加行、列索引: # 构造行索引序列 subjects...6、高级处理-缺失值处理 在pandas中,缺失值使用NaN来标记,如下图所示: 6.1 如何处理nan 按如下步骤进行: (1)获取缺失值的标记方式(NaN或者其他标记方式) (2)如果缺失值的标记方式是...思路分析 1、创建一个全为0的dataframe,列索引置为电影的分类,temp_df 2、遍历每一部电影,temp_df中把分类出现的列的值置为1 3、求和 思路 下面接着看: 1、创建一个全为0的dataframe
这篇文章目的梳理几个高效实用的pandas小技巧,供大家参考。 1....从剪切板中创建DataFrame pandas中的read_clipboard()方法非常神奇,可以把剪切板中的数据变成dataframe格式,也就是说直接在excel中复制表格,可以快速转化为dataframe...标红色地方是有缺失值的列,并且给出了非缺失值的数量,你可以计算出该列有多少缺失值。...对连续数据进行离散化处理 在数据准备过程中,常常会组合或者转换现有特征以创建一个新的特征,其中将连续数据离散化是非常重要的特征转化方式,也就是将数值变成类别特征。...从多个文件中构建一个DataFrame 有时候数据集可能分布在多个excel或者csv文件中,但需要把它读取到一个DataFrame中,这样的需求该如何实现?
(3)读取文件方便 (4)封装了Matplotlib、Numpy的画图和计算 1.2 Pandas数据结构 Pandas中一共有三种数据结构,分别为:Series、DataFrame和MultiIndex...横向索引,叫index,0轴,axis=0 列索引,表名不同列,纵向索引,叫columns,1轴,axis=1 1、DataFrame的创建 # 导入pandas import pandas as pd...# 使用Pandas中的数据结构 score_df = pd.DataFrame(score) 结果: 给分数数据增加行列索引,显示效果更佳: 增加行、列索引: # 构造行索引序列 subjects...6、高级处理-缺失值处理 在pandas中,缺失值使用NaN来标记,如下图所示: 6.1 如何处理nan 按如下步骤进行: (1)获取缺失值的标记方式(NaN或者其他标记方式) (2)如果缺失值的标记方式是...思路分析 1、创建一个全为0的dataframe,列索引置为电影的分类,temp_df 2、遍历每一部电影,temp_df中把分类出现的列的值置为1- 3、求和 思路 下面接着看: 1、创建一个全为0的
目录 pandas中索引的使用 .loc 的使用 .iloc的使用 .ix的使用 ---- pandas中索引的使用 定义一个pandas的DataFrame对像 import pandas as pd...1 4 7 b 2 5 8 c 3 6 9 .loc 的使用 .loc[],中括号里面是先行后列,以逗号分割,行和列分别是行标签和列标签,比如我要得到数字5,那么就就是...,左上角的值是5,右下角的值是9,那么这个矩形区域的值就是这两个坐标之间,也就是对应5的行标签到9的行标签,5的列标签到9的列标签,行列标签之间用逗号隔开,行标签与行标签之间,列标签与列标签之间用冒号隔开...那么,我们会想,那我们只知道要第几行,第几列的数据呢,这该怎么办,刚好,.iloc就是干这个事的 .iloc的使用 .iloc[]与loc一样,中括号里面也是先行后列,行列标签用逗号分割,与loc不同的之处是...,.iloc 是根据行数与列数来索引的,比如上面提到的得到数字5,那么用iloc来表示就是data.iloc[1,1],因为5是第2行第2列,注意索引从0开始的,同理4就是data.iloc[0,1],
Pandas 图鉴系列文章由四个部分组成: Part 1. Motivation:Pandas图鉴(一):Pandas vs Numpy Part 2....对于非数字标签来说,这有点显而易见:为什么(以及如何)Pandas在删除一行后,会重新标记所有后续的行?对于数字标签,答案就有点复杂了。...pdi中实现了一个叫做insert的函数,可以自动完成这个过程: 注意,(就像在df.insert中一样)插入的位置是由0的位置给出的,而不是由索引中的元素的标签。...字符串和正则表达式 几乎所有的Python字符串方法在Pandas中都有一个矢量的版本: count, upper, replace 当这样的操作返回多个值时,有几个选项来决定如何使用它们: split..., join, explode 如果知道正则表达式,Pandas也有矢量版本的常用操作: findall, extract, replace Group by 在数据处理中,一个常见的操作是计算一些统计数据
1. 查看 pandas 及其支持项的版本 使用 pd.__version__ 查看 pandas 的版本。 ? 查看所有 pandas 的支持项版本,使用 show_versions 函数。...这个 DataFrame 里的数字其实是以字符串形式保存的,因此,列类型是 object。 ?...isna() 生成一个由 True 与 False 构成的 DataFrame,sum() 把 True 转换为 1, 把 False 转换为 0。 还可以用 mean() 函数,计算缺失值占比。...要解决这个问题得用 transform() 方法,这个方法执行同样的计算,但返回与原始数据行数一样的输出结果,本例中为 4622 行。 ?...重塑多重索引 Series 泰坦尼克数据集里有一列标注了幸存(Survived)状态,值用 0、1 代表。计算该列的平均值可以计算整体幸存率。 ?
pandas 数据类型转换和读取写入 pandas 若要由pandas对象转换为 xarray 对象或者由 xarray 转为pandas对象,可以对pandas[4] 对象使用to_xarray[5...将 ds(Dataset)中的变量a转换为 pandas 类型 ds.a.to_series() ds.a.to_series() 如何理解这一句代码呢?...由于没有指定 index,则在默认情况下,index 默认为数字且从 0 开始,步长为 1....(broadcast) 离散数据存储 广播数据对其连续化 这样的情况下就保证了每一个 a 都对应了 b 中的一行数据。...ds.a.to_dataframe() ds.a.to_dataframe() 类似于转换为列表,为保证数据的连续性,对于转换为DataFrame数组也会发生广播。
Pandas 1.Pandas介绍 1.1Pandas与Numpy的不同? 答:Numpy是一个科学计算库,用于计算,提高计算效率。...# 使用统计函数:0 代表列求结果,1 代表行求统计结果 data.max(0) 对象.median() -- 中位数 对象.idxmax(axis=) -- 最大值的索引值 对象.idxmin(axis...1/2/3/…/n个数的和 cummax 计算前1/2/3/…/n个数的最大值 cummin 计算前1/2/3/…/n个数的最小值 cumprod 计算前1/2/3/…/n个数的积 3.2.5自定义运算...5.3json文件 JSON是我们常用的一种数据交换格式,前面在前后端的交互经常用到,也会在存储的时候选择这种格式。所以我们需要知道Pandas如何进行读取和存储JSON格式。...[xx, xx] 合并的两张表。 axis=0为列索引,axis=1为行索引。 pd.merge() left和right是DataFrame结构数据。
写在开头 在机器学习中,我们除了关注模型的性能外,数据处理更是必不可少,本文将介绍一个重要的数据处理库pandas,将随着我的学习过程不断增加内容 基本数据格式 pandas提供了两种数据类型:Series...和DataFrame,在机器学习中主要使用DataFrame,我们也重点介绍这个 DataFrame dataframe是一个二维的数据结构,常用来处理表格数据 使用代码 import pandas as...,包含行与列的信息 数据选取 iloc 我觉得pandas里面选取数据的一个很通用的方法是iloc pd.iloc[行序号, 列序号] iloc的参数用逗号隔开,前面是行序号,后面是列序号 import...) 我们这里指定显示前2行,不指定默认值是前5行 describe describe方法可以描述表格所有列的数字特征,中位数,平均值等 import pandas as pd a = {"a...,我们使用list函数把它转化成列表然后打印出来,可以看到成功分组了,我们接下来会讲解如何使用聚合函数求和 聚合函数agg 在上面的例子中我们已经分好了组,接下来我们使用agg函数来进行求和,agg函数接收的参数是一个函数
01 系列回顾 玩转Pandas系列已经连续推送4篇,尽量贴近Pandas的本质原理,结合工作实践,按照使用Pandas的逻辑步骤,系统地并结合实例推送Pandas的主要常用功能,已经推送的4篇文章:...Pandas主要的两个数据结构: Series(一维)和DataFrame(二维), 系统地介绍了创建,索引,增删改查Series, DataFrame等常用操作接口, 总结了Series如何装载到DataFrame...pandas使用浮点NaN表示浮点和非浮点数组中的缺失数据,它没有什么具体意义,只是一个便于被检测出来的标记而已,pandas对象上的所有描述统计都排除了缺失数据。...or ‘index’, 1 or ‘columns’} 举例说明如何使用,假如有如下一张表 pd_data ?...以上总结了DataFrame在处理空缺值的常用操作,及连接多个DataFrame的concat操作。 小编对所推文章分类整理,欢迎后台回复数字,查找感兴趣的文章: 1. 排序算法 2.
把连续型数据转换为类别型数据 改变显示选项 设置 DataFrame 样式 彩蛋:预览 DataFrame 0....1. 查看 pandas 及其支持项的版本 使用 pd.__version__ 查看 pandas 的版本。 ? 查看所有 pandas 的支持项版本,使用 show_versions 函数。...isna() 生成一个由 True 与 False 构成的 DataFrame,sum() 把 True 转换为 1, 把 False 转换为 0。 还可以用 mean() 函数,计算缺失值占比。...要解决这个问题得用 transform() 方法,这个方法执行同样的计算,但返回与原始数据行数一样的输出结果,本例中为 4622 行。 ?...重塑多重索引 Series 泰坦尼克数据集里有一列标注了幸存(Survived)状态,值用 0、1 代表。计算该列的平均值可以计算整体幸存率。 ?
上面表示的是Pandas中字符或者字符与其他类型(案例是None)的混合类型。... dtype: string 上面表示的是pandas的“纯“字符类型”。...使用字符串的str属性 Pandas中内置了等效python的字符串操作方法:str属性 df = pd.DataFrame(["Python Gudio 1991","Java Gosling 1990...:索引从0开始 # 使用字符串的get方法 df["Language"].str.split().str.get(0) 0 Python 1 Java 2 None 3...,其余字母为小写 str.isalpha:检查字符串是否只由字母组成 str.isdigit;检查字符串是否只由数字组成 str.islower:检查字符串是否只由小写字母组成 str.isupper:
笔者最近需要使用pyspark进行数据整理,于是乎给自己整理一份使用指南。pyspark.dataframe跟pandas的差别还是挺大的。...(参考:王强的知乎回复) python中的list不能直接添加到dataframe中,需要先将list转为新的dataframe,然后新的dataframe和老的dataframe进行join操作,...explode方法 下面代码中,根据c3字段中的空格将字段内容进行分割,分割的内容存储在新的字段c3_中,如下所示 jdbcDF.explode( "c3" , "c3_" ){time: String...(均返回DataFrame类型): avg(*cols) —— 计算每组中一列或多列的平均值 count() —— 计算每组中一共有多少行,返回DataFrame有2列...返回当前DataFrame中不重复的Row记录。
由于许多潜在的 Pandas 用户对 Excel 电子表格有一定的了解,因此本页旨在提供一些案例,说明如何使用 Pandas 执行各Excel电子表格的各种操作。...在 Pandas 中,如果未指定索引,则默认使用 RangeIndex(第一行 = 0,第二行 = 1,依此类推),类似于电子表格中的行标题/数字。...数据操作 1. 列操作 在电子表格中,公式通常在单个单元格中创建,然后拖入其他单元格以计算其他列的公式。在 Pandas 中,您可以直接对整列进行操作。...在 Pandas 中,您通常希望在使用日期进行计算时将日期保留为日期时间对象。输出部分日期(例如年份)是通过电子表格中的日期函数和 Pandas 中的日期时间属性完成的。...添加一行 假设我们使用 RangeIndex(编号为 0、1 等),我们可以使用 DataFrame.append() 在 DataFrame 的底部添加一行。
领取专属 10元无门槛券
手把手带您无忧上云