使用numpy和MPI创建带有随机数的大矢量可以通过以下步骤实现:
import numpy as np
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
vector_size = 1000000
random_min = 0
random_max = 100
chunk_size = vector_size // size
remainder = vector_size % size
if rank < remainder:
local_size = chunk_size + 1
local_offset = rank * local_size
else:
local_size = chunk_size
local_offset = rank * chunk_size + remainder
local_vector = np.random.randint(random_min, random_max, local_size)
global_vector = np.empty(vector_size, dtype=np.int)
comm.Allgather([local_vector, MPI.INT], [global_vector, MPI.INT])
if rank == 0:
print(global_vector)
完整代码示例:
import numpy as np
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
vector_size = 1000000
random_min = 0
random_max = 100
chunk_size = vector_size // size
remainder = vector_size % size
if rank < remainder:
local_size = chunk_size + 1
local_offset = rank * local_size
else:
local_size = chunk_size
local_offset = rank * chunk_size + remainder
local_vector = np.random.randint(random_min, random_max, local_size)
global_vector = np.empty(vector_size, dtype=np.int)
comm.Allgather([local_vector, MPI.INT], [global_vector, MPI.INT])
if rank == 0:
print(global_vector)
这段代码使用numpy生成了一个大小为1000000的随机数矢量,每个元素的取值范围是0到100。然后使用MPI的Allgather函数将每个进程生成的局部矢量收集到全局矢量中,并在进程0中打印全局矢量。
推荐的腾讯云相关产品:腾讯云弹性计算(Elastic Compute)产品,提供了丰富的云服务器实例类型和规格,适用于各种计算场景。您可以根据自己的需求选择适合的云服务器实例来运行上述代码。更多产品信息请参考腾讯云弹性计算产品介绍:腾讯云弹性计算。
领取专属 10元无门槛券
手把手带您无忧上云