Matplotlib引领数据图表绘制 前言 在数据科学领域,数据可视化是一种强大的工具,能够将复杂的数据转化为易于理解和分析的图形。...Matplotlib作为Python中最流行的数据可视化库,为我们提供了丰富的绘图功能和灵活的绘图选项。本文将深入探索Matplotlib。...matplotlib.pyplot as plt import numpy as np 设置 figure Matplotlib 绘制的图形都在一个默认的 figure 中,我们可以自己创建 figure...我们可以使用x和y关键字绘制一列与另一列。 绘图方法允许除默认线图之外的少数绘图样式。 这些方法可以作为plot()的kind关键字参数提供。...通过学习和应用Matplotlib,我们能够将复杂的数据转化为直观的图表,更好地理解数据,支持决策和分析。
背景介绍 今天我们将学习如何在Matplotlib中使用子图。使用子图,以便我们可以以更面向对象的方式使用Matplotlib。...我们将学习如何使用子图来绘制我们在之前的文章中关于开发语言工资的数据图表,然后我们将学习如何使用子图在一个图上创建多个图。让我们开始吧... ?...入门实例 首先我们从data.csv文件中读取数据,进行绘制: ?...import pandas as pd from matplotlib import pyplot as plt from matplotlib import font_manager plt.style.use
Python大数据分析 记录 分享 成长 作者:雪山飞猪 博客地址: https://www.cnblogs.com/chenqionghe/p/12355018.html 说明:本文经作者授权转载...,禁止二次转载 Matplotlib是Python的底层绘图工具,可定制性很强,很多人刚开始使用Matplotlib时,不明白一些基础概念,比如figure和axis的区别?...如何绘制多个子图的图表?这次写个小短文来讲一讲。 fig和axis的区别? 相信不少小伙伴一开始都是直接用plt.plot来绘图,非常简单,但这是偷懒的做法,不建议大家这样。...绘制多子图 使用Matplotlib绘图单图相对比较容易,但有时候需要将多张图放在一张图表里,这就用到子图操作。...explode=[0,0.05,0,0]) # 画第4个图:条形图 ax[1][1].bar([20,10,30,25,15],[25,15,35,30,20],color='b') plt.show() 绘制不规则子图
使用 matplotlib 绘制多彩的曲线 源码及参考链接 效果图 [multicolors_line.png] 代码 import numpy as np import matplotlib.pyplot...as plt from matplotlib.collections import LineCollection from matplotlib.colors import ListedColormap...([points[:-1], points[1:]], axis=1) fig, axs = plt.subplots(2,1,sharex=True,sharey=True) """ 创建一个从数据点到颜色的...) lc.set_linewidth(2) line = axs[1].add_collection(lc) fig.colorbar(line, ax=axs[1]) plt.show() 代码中使用到的类简单介绍一下...LineCollection 大概是一个“线段集合”的类 matplotlib.collections.LineCollection(segments, *args, zorder=2, **kwargs
使用 matplotlib 绘制条形码 源码及参考链接 效果图 [barcode.png] 代码 import numpy as np import matplotlib.pyplot as plt
import matplotlib.pyplot as plt import numpy as np x = ["hubei","huangshi","wuhang","beijing","shanghai
标签:Python,Matplotlib Python的Matplotlib库是使用最广泛的数据可视化库之一。...使用Matplotlib,可以使用各种图表类型绘制数据,包括折线图、条形图、饼图和散点图。 Matplotlib允许绘制单个图表,但也允许以网格的形式一次绘制多个图表。...在本文中,将详细演示如何使用Matplotlib库绘制多个图。 绘制单个图 在展示如何绘制多个图之前,先通过一个演示如何使用Matplotlib绘制单个图的示例,确保掌握了基本原理。...要使用Matplotlib绘图,使用Matplotlib库中的pyplot子模块。 具体来说,要绘制折线图,需要从pyplot模块调用plot()函数,并将x轴和y轴的值列表传递给它。...图1 注意:%matplotlib inline代码段仅适用于Jupyter笔记本。如果不使用Jupyter笔记本,只需在开始绘制图之后添加plt.show()即可。
除了绘制经典的二维图表外,matplotlib还支持绘制三维图表,通过mplot3d工具可以实现,只需要在axes对象中指定projection参数为3d即可,常见的折线图,散点图,柱状图,等高线图等都可以进行三维图表的绘制...折线图 示例如下 >>> import numpy as np >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> ax = plt.axes...除了以上基本类型外,matplotlib还支持更多的3D图表类型,具体用法请查看官方文档。 ·end·
1 模块安装 先安装matplotlib: pip install matplotlib 安装numpy模块,安装matplotlib时候就已经安装这个依赖了,所以不用装了,当然也可以独立安装: 图片...安装pandas: pip install numpy 2 实现思路 数据存放在excel中,对指定数据进行分析,所以需要用到pandas; 对指定数据分析后绘制饼形图,需要用到Matplotlib模块的...36.19 贵州省 user047 159.9 福建省 user048 49.9 四川省 user049 45.6 广东省 user050 149.8 广东省 3 pie()函数说明 实现这个功能,主要使用了...# 读取数据 self.data_path = '....模块的pie()函数绘制饼形图 import pandas as pd from matplotlib import pyplot as plt class TestPie(): def
本文主要演示如何使用matplotlib绘制三维图形。直接上代码,关键语句配有注释方便理解。...import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot...mpl.rcParams['legend.fontsize'] = 10 fig = plt.figure() # 设置三维图形模式 ax = fig.gca(projection='3d') # 测试数据...np.pi, 100) z = np.linspace(-4, 4, 100) / 4 r = z**3 + 1 x = r * np.sin(theta) y = r * np.cos(theta) # 绘制图形
image.png 大家可以去翻看历史文章,附有完整代码和数据,有兴趣做些可视化探索。 大数据告诉你,台风最喜欢在我国哪个省市登陆 这次的文章不研究台风数据,而是尝试用Python来绘制台风路径。...主要第三方库 用到的主要工具包有pandas、numpy、matplotlib、cartopy、shapely,前三个库大家可能都熟悉,下面介绍下后两个库的使用场景。...原始数据比较乱,我重新处理了方便使用: 可以看到共有7个字段: ❝台风编号:我国热带气旋编号 日期:具体时间 强度:0~9 纬度:单位0.1度 经度:单位0.1度 中心气压:hPa 中心最大风速...:m/s ❞ 绘制地图 台风路径需要在地图上展示,那么如何获取地图呢?...:用来绘制图表 import matplotlib.pyplot as plt # shapely:用来处理点线数据 import shapely.geometry as sgeom import warnings
使用 matplotlib 绘制带日期的坐标轴 源码及参考链接 效果图 [运行结果] 代码 import numpy as np import matplotlib.pyplot as plt import...matplotlib.dates as mdates fig, ax = plt.subplots() """生成数据""" beginDate = '2012-01-01' endDate =...ax.grid(True) """自动调整刻度字符串""" # 自动调整 x 轴的刻度字符串(旋转)使得每个字符串有足够的空间而不重叠 fig.autofmt_xdate() plt.show() 代码中使用到的类简单介绍一下...matplotlib.dates.datestr2num() 将日期转化为天数差 numpy.datetime64() 将数字(天数差)转为日期对象 numpy.datetime64 matplotlib.dates.MonthLocator...() 配合设置日期刻度间隔 matplotlib.dates.DateFormatter() 设置日期显示格式 fig.autofmt_xdate() 自动调整坐标轴,未调用字符串会重叠在一起 [未调整字符串
文章目录 使用函数绘制图表 1.绘制matplotlib图表组成元素的主要函数 2.准备数据 3.函数用法 3.1函数plot()--展现变量的趋势变化 3.2函数scatter()--寻找变量之间的关系...3.3函数xlim()--设置x轴的数值显示范围 3.4函数xlabel()--设置x轴的标签文本 3.5 函数grid()--绘制刻度线的网格线 3.6 函数axhline()--绘制平行与x轴的水平参考线...函数title()--添加图形内容的标题 3.11 函数legend()--标识不同图形的文本标签图例 函数综合应用 使用函数绘制图表 1.绘制matplotlib图表组成元素的主要函数 在一个图形输出窗口中...在画布上的就是图形,图形是一些Axes实例,里面几乎包含了matplotlib的组成元素,例如坐标轴、刻度、标签、线和标记等。...2.准备数据 我们可以导入第三方包NumPy和快速绘图模块pyplot,matplotlib库就是建立在科学计算包NumPy基础之上的Python绘图库。
问题或建议,请公众号留言; 背景介绍 今天我们将学习如何使用Matplotlib绘制实时数据图表。我们将学习如何监控不断更新的CSV文件,并在该文件进入时绘制该CSV文件中的值。...这对于绘制来自API或传感器或任何其他频繁来源的数据非常有用。让我们开始吧... ?...动态生成数据 接下来我们模拟一个实时数据的产生,动态的追加到data.csv文件中去,来看代码实现: import csv import random import time x_value = 0...total_1 + random.randint(-6, 8) total_2 = total_2 + random.randint(-5, 6) time.sleep(1) 绘制实时数据图表...我们来实现动态读取上边生成的data.csv文件,进行实时的绘制图表信息: import pandas as pd import matplotlib.pyplot as plt from matplotlib.animation
1 正文 数据预处理 用 Pandas 从 'data.csv' 中加载数据(2006 年 1 月到 2020 年 4 月 10 日上证和标普 500 的日收盘价),csv 数据的截屏如下: 下列代码注意三个细节...,数据太多生成动图太慢。...使用 animation 库里的 FuncAnimation(),其调用形式为 FuncAnimation( fig, animate, frames...这些后期制造大家可以按自己的需求和喜好来做,核心还是用 matplotlib 做出动态图。...2 总结 由于我刚接触这个用 matplotlib 画动图,就是有天一个读者在微信群给我看了这样的视频,我觉的很酷而且记得 matplotlib 可以画动图就是试着实现。
文章目录 使用统计函数绘制简单图形 1.函数bar()--用于绘制柱状图 2.函数barh()--用于绘制条形图 3.函数hist()--用于绘制条形图 4.函数pie()--用于绘制饼图 5.函数polar...使用统计函数绘制简单图形 1.函数bar()–用于绘制柱状图 函数功能: 在x轴上绘制定性数据的分布特征 调用签名: plt.bar(x, y) 参数说明: x: 标示在x轴上的定性数据的类别 y...: 每种定性数据的类别的数量 # -*- coding: utf-8 -*- import matplotlib as mpl import matplotlib.pyplot as plt mpl.rcParams...函数功能: 绘制定性数据的不同类别的百分比 调用签名: plt.pie(x) 参数说明: x: 定性数据的不同类别的百分比 # -*- coding: utf-8 -*- import matplotlib...参数说明: x: 绘制箱线图的输入数据 import matplotlib.pyplot as plt import numpy as np x = np.random.randn(1000) plt.boxplot
Python 数据可视化入门-使用 Matplotlib 绘制基础与高级图表数据可视化是数据分析中至关重要的一部分。通过可视化,我们可以更直观地理解数据中的模式、趋势和异常。...本文将介绍如何使用 Matplotlib 创建一些基本的数据可视化图表,包括折线图、柱状图、散点图和饼图,并通过代码实例进行演示。1....下面是一些示例,演示如何结合使用 Matplotlib 和 Pandas 进行数据可视化。...Matplotlib 会自动处理图例和标签。6.2 使用 Pandas 绘制时间序列图Pandas 也可以方便地处理时间序列数据并进行可视化。...总结在这篇文章中,我们探讨了如何使用 Matplotlib 创建各种类型的基本数据可视化图表,从简单的折线图到复杂的动态和交互式图表。
import matplotlib.pyplot as plt plt.figure(figsize=(6,9)) #调节图形大小 labels
import matplotlib.pyplot as plt import numpy as np n = ["hubei","huangshi","wuhang","beijing","shanghai
,清晰且具有吸引力的数据可视化对于有效地传达信息至关重要。...Matplotlib 是 Python 中最受欢迎的数据可视化库之一,它提供了强大的功能来创建各种类型的图表。...那么有位读者提出如何使用matplotlib画一个有端的线段标注想要的数据 项目方法 在这篇博文中,我们将探讨如何利用 Matplotlib 创建一种特殊的图形元素——带有端头的垂直线段,这种线段可以用来强调数据中的特定点或区间...下面的代码定义了一个名为 draw_capped_line 的函数,该函数会在给定的轴上绘制一条垂直线段,并在该线段的两端添加水平的小横杠(端头)。...导入库 In [2]: import numpy as np import matplotlib.pyplot as plt 简单示例 复杂示例 小结 通过上面的代码,我们可以看到如何使用 matplotlib
领取专属 10元无门槛券
手把手带您无忧上云