在BBC数据团队开发了一个R包,以ggplot2内部风格创建可发布出版物的图形,并且使新手更容易到R创建图形。 例如:
最近确实更得太少了,也不知道自己在忙啥,反正感觉不到忙碌的收获,要不是好多小伙伴儿在后台催更,感觉都快忘了还有要更新公众号这回事儿, 进入2018年以来,1月份更新了3篇,2月份更新了4篇,三月份2篇,自己都感觉过分了哈哈~ 今天赶紧找空写一篇~ 学过ggplot2的小伙伴儿们大概都了解过,ggplot2的语法系统将数据层和美化层分开,这种理念给了学习更多的选择,你可以只学习数据层,这样大可保证做出正确的图来(虽然质量不敢恭维),也可以同时学习数据层和美化层(当然你要耗费双倍的精力,因为ggplot2理念几
❝本节来介绍如何使用「ggplot2」来绘制热图并添加双向箭头添加注释,下面小编通过一个案例来进行展示,图形仅供展示用,希望各位观众老爷能够喜欢。。❞
学习了ggplot2的基本绘图元素ggplot2|详解八大基本绘图要素,可以初步绘制出需要展示的图形,legend可以对图例进行细节的修改ggplot2 |legend参数设置,图形精雕细琢,那theme有什么用呢?
ggplot2的主题系统可以让我们更好的控制图形 非数据元素 的细节,通过更加精细的修改来提升图像的美感,ggplot2 的主题系统自带多个 element_ 功能
这个函数的主要目的是生成每个文本标签在圆上的坐标和角度,以便它们可以围绕圆形排列。它使用以下步骤完成
在进行数据可视化作品绘制时,我们需要在相应位置添加文本标签进行标注或者解释说明使用,少量数据点进行标注时相对简单,也比较明确,当需要标注的数据较多、或集中在一个区域时,标注文本就会产生相互叠加,影响标注内容和美观。如下:
第一种方法是直接在原数据集上改,因为这个图例的标题对应的是数据的列名,我把列名改了就可以了
经常利用Python进行数据可视化的朋友一定用过或听说过plotly这样的神器,我在(数据科学学习手札43)Plotly基础内容介绍中也曾做过非常详细的介绍,其渲染出的图像以浏览器为载体,非常精美,且绘制图像的自由程度堪比ggplot2,其为R也提供了接口,在plotly包中,但对于已经习惯用ggplot2进行可视化的朋友而言,自然是不太乐意转向plotly的学习,有趣的是plotly的R包中有着函数ggplotly(),可以将ggplot2生成的图像转换为交互式的plotly图像,且还可以添加上ggplot2原生图像中无法实现的交互标签,最重要的是其使用方法非常傻瓜式,本文就将结合几个小例子来介绍ggplotly()的神奇作用;
❝本节来介绍一个修改文本颜色的绘图案例,在实际数据分析的过程中某些情况下我们需要为轴文本和图例文本来添加不同的颜色,但是由于在ggplot2中无默认的参数来实现这一功能,在此小编使用另一种巧妙的方法来实现这一需求,整个过程仅参考。希望对各位观众老爷能有所帮助。
自定义ggplot2图的图例。这里我们要修改非数据组件,通常通过theme()命令来完成。 此页面受到ggplot2(?theme)帮助页面的强烈启发。 另外,请访问非常强大的ggplot2文档以获取更多信息。我们从mtcars数据集和默认图例开始:
在本课中需要制作与每个样本中的平均表达量相关的多个图,还需要使用所有可用的metadata来适当地注释图表。
上图的横坐标轴看起来是离散的,但是我们用连续的数值来做横坐标,是为了后续再同一个图上叠加折线图更方便。
今天继续 跟着Nature Communications学画图系列第四篇。学习R语言ggplot2包画散点图,然后分组添加拟合曲线。对应的是论文中的Figure2
函数scale_x_discrete可用于将项目的顺序更改为“2”,“0.5”,“1”:
Matplotlib是最受欢迎的二维图形库,但有时让你的图变得像你想象中好并不容易。
这样多了一个垂直线,不好看,我们把误差线的图层放到最下层,就是把代码写到boxplot的前面,然后加一些基本的美化
使用 ggplot2 包画箱线图通常使用 geom_boxplot() 函数。箱线图(Boxplot)是一种用于展示一组数据分布特征的图形,它能够提供以下信息:
Plotly 的 update_layout() 方法以及legend_font_color和legend_font_size参数可用于手动添加图例颜色和字体大小。下面提供了语法的插图 -
写在最后:有时间我们会努力更新的。大家互动交流可以前去论坛,地址在下面,复制去浏览器即可访问,弥补下公众号没有留言功能的缺憾。
部分数据代码是公开的 下载链接https://zenodo.org/record/4781590#.YSB40Hzivic
提到R语言,总会想到它强大的绘图包ggplot2,甚至于其他语言中也有它的痕迹(例如,python中的matplotlib模块就有ggplot样式)。以下,总结了一些日常绘图中常用的命令。
R具有强大的统计计算功能和便捷的数据可视化系统。目前R主要支持四套图形系统:基础图形(base)、网格图形(grid)、lattice图形和ggplot2。其中ggplot2凭借强大的语法特性和优雅的图形外观,逐渐成为R中数据可视化的主流选择。
Winform控件是Windows Forms中的用户界面元素,它们可以用于创建Windows应用程序的各种视觉和交互组件,例如按钮、标签、文本框、下拉列表框、复选框、单选框、进度条等。开发人员可以使用Winform控件来构建用户界面并响应用户的操作行为,从而创建功能强大的桌面应用程序。
第一步:准备数据,使用的数据包括三列,len长度,supp是分类变量,dose是0.5mg,1mg和2mg三个变量。
英国广播公司(British Broadcasting Corporation;BBC)是全球最大的新闻媒体,其中各类新闻稿件采用的统计图表能很好地传达信息。为了方便清洗可重复数据和绘制图表,BBC数据团队用R对数据进行处理和可视化,经年累月下于去年整理绘图经验并开发了R包-bbplot,帮助我们画出和BBC新闻中一样好看的图形。
本期推文的主要内容是散点图的绘制教程,所使用的数据关于全球教育水平划分的师生比例,涉及到的包主要为matplotlib和seaborn,当然用于数据处理分析的pandas和 numpy也必不可少。
地理可视化是数据科学领域中的一个重要方面,它能帮助我们更好地理解和展示数据的空间分布。Python作为一种流行的编程语言,有着丰富的地理可视化工具库。其中,Folium是一个基于Leaflet.js的Python库,能够轻松地创建交互式地图。
上一篇中我们介绍了ggplot2的基本语法规则,为了生成各种复杂的叠加图层,需要了解ggplot2中一些基本的几何图形的构造规则,本文便就常见的基础几何图形进行说明;
上篇原创推文使用了geopandas进行了房价分布的地图推文教程,本期我们将使用绘图功能更加强大的ggplot2 以及其推展包进行地图绘制和图表美化工作,主要涉及的知识点如下:
相关矩阵显示相对大量连续变量之间的相关系数。 然而,虽然R提供了一种通过cor函数创建这种矩阵的简单方法,但它没有为该函数创建的矩阵提供绘图方法。ggcorr函数提供了这样的绘图方法,使用ggplot2包中实现的“图形语法”来渲染绘图。 在实践中,其结果在图形上接近于corrplot函数的结果,这是优秀的arm包的一部分。
stat_poly_line 是一个在 ggplot2 图形中添加多项式回归线的函数。这个函数直接计算多项式回归模型,并将拟合线添加到图形上。它允许指定多项式的阶数,即回归方程中最高次项的次数。可直接在图形上添加拟合线,而不是基于数据点的平滑。
最近接触COVID的项目,目前COVID已经在世界上普遍大流行,而且WHO官网及霍普金斯大学等都有相对应的全球COVID19监测平台。每天实时更新。
数据可视化是一种将密集复杂数据信息以视觉图形的形式呈现。设计出来的视觉效果简化了数据,让用户分析研究比较数据变得容易以及可以更好地向领导或者团队讲述“故事”——可以帮助用户更好地做出决策。
参见:https://www.cedricscherer.com/2019/08/05/a-ggplot2-tutorial-for-beautiful-plotting-in-r/#prep(挑选的翻译了全文,并结合了一些自己的经验)
不光有文字介绍,结尾还有视频,非常好的学习素材 打开这份教程的主页,发现还有好多其他内容,在这里推荐给大家
我们通常看到的小而美的图表,一般都是经过图表制作者深层次加工过的成品。 而要想了解一个规范的商务图表制作过程,对图表的拆解与还原就显得非常重要。 今天的案例是关于三家电子消费业巨头:三星、苹果、华为的
在数据分析报告中,条形图是很常见的一种表现形式,可以的反应各项之间的比较情况。在实际的应用中,为了更加直接、美观,对图表的展现形式也有了越来越高的要求。通过强大的ggplot2包,也可以画出有特色的条
主要内容是探索了NBA 14/15赛季常规赛MVP排行榜前四名 库里 哈登 詹姆斯 威少的投篮数据。今天重复第一个内容:用R语言的ggplot2画山脊图展示以上四人的投篮出手距离的分布。
我们平时在使用ggplot绘图时,如果绘图标题、坐标轴标题或者文本标签中含有中文,在绘图结果中将显示为方框。 如:
❝本节来介绍如何使用ggplot2来绘制森林图,下面通过一个小例子来进行展示 ❞ 加载R包 library(tidyverse) 导入数据 unicox <- read_csv("AKT3_mRNA_OS_pancan_unicox.csv") 绘制森林图 p1 <- ggplot(unicox,aes(HR_log, cancer, col=Type))+ geom_point(aes(size=-log10(p.value)))+ geom_errorbarh(aes(xmax =u
购买后微信发小编订单截图即邀请进新的会员交流群,小编的文档为按年售卖,只包含当年度的除系列课程外的文档,有需要往年文档的朋友也可下单购买,需要了解更多信息的朋友欢迎交流咨询。
但是我们的文字版推文还在第一篇文献,前面已经分享了3个:胃癌单细胞数据集GSE163558复现(二):Seurat V5标准流程,接下来是图表美化和单细胞亚群比例探讨:
年初的时候我好像打算对ggplot2进行一个教程,后来因为其他事情耽搁了,今天打开以往的git日志,才发现有这么一个坑(ggplot2初探),虽然现在绘图的包层出不穷,但是ggplot真的是一个基础的绘图包了。
领取专属 10元无门槛券
手把手带您无忧上云