首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何使用R中dplyr对列进行分组并在列中创建不同的组

dplyr 是 R 语言中一个非常流行的数据操作包,它提供了很多方便的函数来处理数据框(data frame)。在 dplyr 中,可以使用 group_by() 函数对数据进行分组,然后使用聚合函数(如 summarise()mutate() 等)来创建新的列或计算每组的统计值。

以下是一个简单的例子,展示如何使用 dplyr 对列进行分组并在列中创建不同的组:

首先,确保你已经安装并加载了 dplyr 包:

代码语言:txt
复制
install.packages("dplyr")
library(dplyr)

假设我们有一个数据框 df,它包含了一些城市的气温和人口数据:

代码语言:txt
复制
df <- data.frame(
  city = c("New York", "Los Angeles", "Chicago", "Houston", "Phoenix"),
  temperature = c(15, 20, 10, 25, 30),
  population = c(8000000, 4000000, 2700000, 2300000, 1600000)
)

现在,我们想要根据气温将城市分为“冷”、“温暖”和“热”三个组,并创建一个新列 temperature_group 来表示这些组:

代码语言:txt
复制
df <- df %>%
  mutate(
    temperature_group = case_when(
      temperature < 15 ~ "Cold",
      temperature >= 15 & temperature < 25 ~ "Warm",
      TRUE ~ "Hot"
    )
  ) %>%
  group_by(temperature_group) %>%
  summarise(
    avg_temperature = mean(temperature),
    total_population = sum(population)
  )

在这个例子中,我们首先使用 mutate() 函数和 case_when() 函数来创建一个新的列 temperature_group,它根据每个城市的气温将其分为“Cold”、“Warm”或“Hot”。然后,我们使用 group_by() 函数按照 temperature_group 列对数据进行分组。最后,我们使用 summarise() 函数来计算每个组的平均气温和总人口。

执行上述代码后,df 将会包含每个温度组的平均气温和总人口。

如果你遇到了问题,比如分组不正确或者聚合函数没有按预期工作,可能的原因包括:

  1. 分组条件不正确:检查 case_when() 函数中的条件是否正确覆盖了所有可能的情况。
  2. 数据类型问题:确保用于分组和聚合的列的数据类型是正确的。
  3. 聚合函数使用错误:检查 summarise() 中使用的聚合函数是否正确。

解决这些问题通常需要检查数据和代码逻辑,确保每一步都符合预期。

更多关于 dplyr 的信息和示例,可以参考官方文档或者通过以下链接学习:

请注意,由于我无法访问互联网,所以无法提供实时的链接,以上链接仅供参考,实际使用时请以最新的官方文档为准。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

0765-7.0.3-如何在Kerberos环境下用Ranger对Hive中的列使用自定义UDF脱敏

文档编写目的 在前面的文章中介绍了用Ranger对Hive中的行进行过滤以及针对列进行脱敏,在生产环境中有时候会有脱敏条件无法满足的时候,那么就需要使用自定义的UDF来进行脱敏,本文档介绍如何在Ranger...中配置使用自定义的UDF进行Hive的列脱敏。...6.再次使用测试用户进行验证,使用UDF函数成功 ? 2.3 配置使用自定义的UDF进行列脱敏 1.配置脱敏策略,使用自定义UDF的方式对phone列进行脱敏 ? ?...由上图可见,自定义UDF脱敏成功 总结 1.对于任何可用的UDF函数,都可以在配置脱敏策略时使用自定义的方式配置进策略中,然后指定用户/用户组进行脱敏。...2.在创建脱敏策略之前,需要先确保对应的用户/用户组已经拥有对表以及UDF函数的权限,否则脱敏策略不会默认授予用户/用户组对于表和UDF函数的权限。

4.9K30
  • R︱高效数据操作——data.table包(实战心得、dplyr对比、key灵活用法、数据合并)

    R语言︱数据集分组、筛选(plit – apply – combine模式、dplyr、data.table) 同时,data.table与data.frame数据呈现方面,还有有所不同的。...data.table中,还有一个比较特立独行的函数: 使用:=引用来添加或更新一列(参考:R语言data.table速查手册) DT[, c("V1","V2") := list(round(exp(V1...SD只能在位置j中使用。 .SDcols常于.SD用在一起,他可以指定.SD中所包含的列,也就是对.SD取子集。...—————————————————————— 实战一:在data.table如何选中列,如何循环提取、操作data.table中的列?...2016-11-28补充: 留言区大神给了一个比较好的选中列的方式,其中主要就是对with的使用: data.table取列时,可以用data[,1,with=FALSE]取data的第一列

    9.3K43

    R语言︱数据集分组、筛选(plit – apply – combine模式、dplyr、data.table)

    R语言︱数据集分组 大型数据集通常是高度结构化的,结构使得我们可以按不同的方式分组,有时候我们需要关注单个组的数据片断,有时需要聚合不同组内的信息,并相互比较。...介绍一种按照日期范围——例如按照周、月、季度或者年——对其进行分组的超简便处理方式:R语言的cut()函数。...##按照已有的类别数据,分类 g进行分组 ##例2:对矩阵分组(按列) m中的第一列实际上是“SELLERID.CLIENT”,我们需要把它拆分成两列并调换顺序才行。...(iris$setosa)] #按照照setosa的大小,重排Sepal.Length数据列 四、dplyr与data.table data.table可是比dplyr以及python中的

    20.9K32

    手把手教你R语言方差分析ANOVA

    这些数值型变量是你要分析的目标,而分类变量则用于将数据分成不同的组。...如果你的数据已经存储在一个外部文件中(如CSV、Excel或RData),你需要使用适当的R函数(如read.csv(), readxl::read_excel(), load()等)将其加载到R环境中...()等函数)或进行变量选择(使用子集选择或dplyr包的select()函数)。...(变量中的水平数减1)和残差的自由度(观察总数减1和自变量中的水平数减1); Sum Sq列显示平方和(即组均值与总体均值之间的总变化)。...step7: 检查残差分布是否符合正态分布ANOVA比较的是均值,需要每个分组的残差服从正态部分plot(one.way, 2)采用Shapiro-Wilk对残差进行检验shapiro.test(x =

    62310

    学习R包

    R的内置数据,test dplyr包不仅可以对单个表格进行操作,也可以对双表格进行操作。...dplyr包有很多函数,为了防止dplyr包中的函数名与其他函数产生冲突,使用时前面加上“包名::”dplyr五个基础函数mutate(),新增列select(),按列筛选按列号筛选注意筛选内容与表格内容的统一...,包括大小写按列名筛选filter()筛选行arrange(),按某1列或某几列对整个表格进行排序arrange(test, Sepal.Length)#默认从小到大排序arrange(test, desc...+ shift + M)同时执行三件事(加载任意一个tidyverse包即可用管道符号)count统计某列的unique值dplyr处理关系数据即将2个表进行连接內连inner_join,取交集左连left_join...注意返回的表的不同反连接:返回无法与y表匹配的x表的所记录anti_join注意返回的表的不同简单合并在相当于base包里的cbind()函数和rbind()函数;注意,bind_rows()函数需要两个表格列数相同

    12310

    R 数据整理(七:使用tidyr和dplyr处理数据框 2.0)

    2.6 arrange 按照数据框里的某列或某几列,对所有行进行排序。可以使用 desc 产生倒序,或写入多个列使其按照多个列进行排序。...2.10 表格的拆分与合并 将同一列中的内容分为两列内容。或将两列内容合并为同一列内容。 首先还是可以创建一个数据框。...对于待分离的对象(col),不必加上引号;但对于即将创建的新列(into),需要使用引号,由于是两列,这里使用向量创建。sep参数设定读取表格信息时以何符号作为分隔符。...对于即将合并的新列,需要使用引号;但对于想要合并的多个列名,可以不用使用引号。sep 参数设定多列合并后不同数据分隔使用的分割符。...extract 除了seperate 外,函数 extract() 可以按照某种正则表达式表示的模式从指定列拆分出对应于正则表达式中捕获组的一列或多列内容。

    10.9K30

    「R」dplyr 行式计算

    「原文来自:dplyr 文档」 上一篇:「R」dplyr 列式计算 通常 dplyr 和 R 更适合对列进行操作,而对行操作则显得更麻烦。...这篇文章,我们将学习围绕rowwise() 创建的 row-wise 数据框的 dplyr 操作方法。 本文将讨论 3 种常见的使用案例: 按行聚合(例如,计算 x, y, z 的均值)。...It doesn’t have to be you. — Jenny Bryan❞ 载入包 library(dplyr, warn.conflicts = FALSE) 创建 行式操作需要一个特殊的分组类型...,我们县创建一个行式数据框: rf % rowwise(id) 我们然后使用 mutate() 添加一个新的列,或者使用 summarise() 仅返回一个汇总列: rf %>% mutate...mutate() 将列切分然后传入 length(y) 的时候,分组 mutate 使用 [ 操作,而行式 mutate 使用 [[。

    6.2K20

    生信代码:数据处理( tidyverse包)

    dplyr包下主要是以下几个操作: select()——选择列 filter/slice()——筛选行 arrange()——对行进行排序 mutate()——修改列/创建列 summarize(...)——汇总数据 而这些函数都可以与group_by结合,分组对原数据框进行处理。...1 mutate() mutate()与基础函数transform()相似,都可以添加新的一列,但是允许引用刚刚创建的列: mydata 使用到,需要保存下来 5 arrange() R base包中涉及到排序的包括 sort(),rank(),order(),而在dplyr包中与排序相关的是arrange()包,默认是从高到低进行排序...进行排序,再对score进行排序 6 group_by() group_by可以对原数据框进行分组计算,例如对于我们本文中的数据框,我们如果对个人或者科目感兴趣的话,可以使用group_by(name

    2.1K10

    懒癌必备-dplyr和data.table让你的数据分析事半功倍

    (贼笑中) dplyr包 R语言中最为重要的包(之一)! 它可以让数据分析功能更加强大,代码更加简洁。你可以随心所欲的操作它,使用它获取你想要的数据,而且它的语法非常简单,非常直白。...mutate( ) 为数据增加新列 mutate(df,vnew1=v1-v2,vnew2=vnew1+v3) 与基础包里的transform()函数接近,但mutate可以使用你刚刚创建的column...找到合适的packages并学习使用它,绝对会让我们数据分析工作事半功倍! 我们有没有发现dylyr包中函数使用的一些规律? 有的!...①第一个参数都是数据集df ②查询条件都是关于如何操作数据集的,在列上面进行操作 ③返回的都是新的数据集,不会改变原始数据集 在介绍下一个包之前,我们先来引入一个dplyr包的综合运用: grouped...以上这段代码我们使用group_by和summarise的结合实现了对数据集分组分析,并进行统计量计算的一个功能。

    2.5K70

    DAY6-学习R包

    install.packages(“包”)或BiocManager::install(“包”)install.packages("dplyr") 加载 library和require 使用一个R包需先安装再加载...library(dplyr)dplyr五个基础函数mutate(),新增列——mutate(test, new = Sepal.Length*Sepal.Width)要修改的数据框的名称将创建的新变量的名称将分配给新变量的值...select()按列筛选select(test,1)#筛选test中的第一列select(test,c(1,5))#筛选test中的第一列和第五列select(test,Sepal.Length)#筛选...test中名为Sepal.Length的一列按列名筛选select(test, Petal.Length, Petal.Width)选择字符向量中的列,select中不能直接使用字符向量筛选,需要使用one_of...%in% c("setosa","versicolor"))#筛选test中有"setosa","versicolor"的行arrange(),按某1列或某几列对整个表格进行排序arrange(test

    23830

    ggstatsplot:R统计绘图的颜值天花板

    ggstatsplot采用典型的探索性数据分析工作流,将数据可视化和统计建模作为两个不同的阶段;可视化为建模提供依据,模型反过来又可以提出不同的可视化方法。...ggstatsplot和它的后台组件还可以和其他基于ggplot2的R包结合起来使用。...(“ggstatsplot”) library(ggstatsplot) 02 — 函数介绍 (1)ggbetweenstats:小提琴图,箱形图 此函数用于创建小提琴图、箱形图或组间或组内比较的组合图...,其边缘分布覆盖在坐标轴上,并在副标题中显示统计测试的结果。...(2)ggstatsplot应用类型广泛,不仅可以调节背景颜色,也可以分组绘图进行图形拼接。 (3)ggstatsplot可以展示统计检验的细节信息也是其强大之处。

    2.4K20

    生信星球Day4 学习R包

    今日学习内容:如何安装R包?.../p/861224f4251aoptions() 设置R运行过程中的一些选项设置options()$repos 查看使用install.packages安装时的默认镜像options()$BioC_mirror...查看使用bioconductor的默认镜像R最重要的两个配置文件: 一是.Renviron,能够设置R的环境变量; 二是.Rprofile,如果启动时找到这个文件,那么就替我们先运行一遍(这个过程就是在启动...() 按某1列或某几列对整个表格进行排序,默认从小到大,用desc()可从大到小summarise() 汇总,配合group_by()分组,可以mean()求平均值,sd()求标准差test 的不同方式inner_join() 內连,取交集,by="x"基于x的列left_join() 左连,保留前一个表,以此多舍少补后一个表full_join()

    21140

    【R语言】dplyr对数据分组取各组前几行

    所以在画图的时候,也需要区分这三类。下面这张表就是GO富集分析得到的结果,我们可以根据ONTOLOGY这一列来分组,就可以得到BP,CC和MF三个组。...然后取每一个组的前10个条目或者前5个条目来绘制柱形图或者气泡图。 那么问题来了,如何分组取前几行。今天小编就跟大家分享一个专业处理数据框的函数dplyr。...然后基于这个R包,我们用6种不同的方法来实现。...% head(n = 5) 虽然,我们使用了group_by进行了分组,但是head并没有应用到三个分组上面,而是直接应用到了整个数据框上,事与愿违。...top_n这个函数来输出每个组的前五行,wt是排序的依据,根据校正之后的p值来排序,n=-5是按从小到大排序。

    1.9K21

    使用R或者Python编程语言完成Excel的基础操作

    数据排序和筛选:掌握如何对数据进行排序和筛选,以查找和组织信息。 数据透视表:学习如何创建和使用数据透视表对数据进行多维度分析。...通过dplyr和tidyr包,我们可以轻松地对数据进行复杂的操作。 在R语言中,即使不使用dplyr和tidyr这样的现代包,也可以使用基础包中的函数来完成数据操作。...R的基础包进行数据处理可能需要编写更多的代码,并且不如dplyr和tidyr这样的专用包那样直观和方便。...Python中使用Pandas库进行数据的读取、类型转换、增加列、分组求和、排序和查看结果。...在实际工作中,直接使用Pandas进行数据处理是非常常见的做法,因为Pandas提供了对大型数据集进行高效操作的能力,以及丰富的数据分析功能。

    23810

    Day6-学习笔记(2024年2月3日)

    学习R包R包是多个函数的集合,具有详细的说明和示例,学习生信R语言必学的原因是丰富的图表和biocductor的各种生信分析R包,包的使用是一通百通的,以dplyr为例,讲解一下R包一、安装和加载R包1...使用一个包,是需要先安装再加载,才能使用包里的函数。...")library(dplyr)示例数据直接使用内置数据集iris的简化版:test dplyr五个基础函数1.mutate(),新增列mutate...Species == "setosa"&Sepal.Length > 5 )filter(test, Species %in% c("setosa","versicolor"))4.arrange(),按某1列或某几列对整个表格进行排序....反连接:返回无法与y表匹配的x表的所记录anti_join6.简单合并在相当于base包里的cbind()函数和rbind()函数;注意,bind_rows()函数需要两个表格列数相同,而bind_cols

    17710
    领券