首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何使用Python Pandas“合并/添加”具有相同列和行的2个混淆矩阵数据帧?

要使用Python Pandas合并/添加具有相同列和行的两个混淆矩阵数据帧,可以使用Pandas的concat()函数或merge()函数。

  1. 使用concat()函数:
  2. 使用concat()函数:
  3. 输出结果:
  4. 输出结果:
  5. 使用merge()函数:
  6. 使用merge()函数:
  7. 输出结果:
  8. 输出结果:

以上两种方法都可以合并具有相同列和行的两个混淆矩阵数据帧。其中,concat()函数可以在行或列方向上进行合并,而merge()函数可以根据指定的列进行合并。具体选择哪种方法取决于你的需求和数据结构。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云Pandas:腾讯云提供的数据分析与处理工具,支持大规模数据处理和分析。
  • 腾讯云云服务器CVM:腾讯云提供的弹性计算服务,可用于部署和运行Python代码。
  • 腾讯云云数据库MySQL:腾讯云提供的关系型数据库服务,可用于存储和管理数据。
  • 腾讯云人工智能:腾讯云提供的人工智能服务,包括图像识别、语音识别、自然语言处理等功能。
  • 腾讯云物联网平台:腾讯云提供的物联网平台,用于连接和管理物联网设备。
  • 腾讯云移动开发:腾讯云提供的移动应用开发服务,包括移动应用托管、推送服务等。
  • 腾讯云对象存储COS:腾讯云提供的对象存储服务,用于存储和管理大规模的非结构化数据。
  • 腾讯云区块链服务:腾讯云提供的区块链服务,用于构建和管理区块链应用。
  • 腾讯云元宇宙:腾讯云提供的元宇宙服务,用于构建虚拟现实和增强现实应用。
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

直观地解释可视化每个复杂DataFrame操作

操作数据可能很快会成为一项复杂任务,因此在Pandas八种技术中均提供了说明,可视化,代码技巧来记住如何做。 ?...Melt Melt可以被认为是“不可透视”,因为它将基于矩阵数据具有二维)转换为基于列表数据(列表示值,表示唯一数据点),而枢轴则相反。...考虑一个二维矩阵,其一维为“ B ”“ C ”(列名),另一维为“ a”,“ b ”“ c ”(索引)。 我们选择一个ID,一个维度一个包含值/。...“inner”:仅包含元件键是存在于两个数据键(交集)。默认合并。 记住:如果您使用过SQL,则单词“ join”应立即与按添加相联系。...例如,考虑使用pandas.concat([df1,df2])串联具有相同列名 两个DataFrame df1 df2 : ?

13.3K20

图解pandas模块21个常用操作

2、从ndarray创建一个系列 如果数据是ndarray,则传递索引必须具有相同长度。...5、序列聚合统计 Series有很多聚会函数,可以方便统计最大值、求和、平均值等 ? 6、DataFrame(数据) DataFrame是带有标签二维数据结构,类型可能不同。...9、选择 在刚学Pandas时,选择选择非常容易混淆,在这里进行一下整理常用选择。 ? 10、选择 整理多种选择方法,总有一种适合你。 ? ? ?...18、查找替换 pandas提供简单查找替换功能,如果要复杂查找替换,可以使用map(), apply()applymap() ?...19、数据合并 两个DataFrame合并pandas会自动按照索引对齐,可以指定两个DataFrame对齐方式,如内连接外连接等,也可以指定对齐索引。 ?

8.9K22
  • PyCaret 可轻松搞定机器学习!

    有两个方法来确定正确数据类型: 使用 Pandas 函数手动更改数据类型; 使用numeric_features categorical_features设置参数; exp_clf = setup...plot_model(logreg, plot='auc') 这是一个 ROC 曲线,它通过合并所有阈值混淆矩阵来汇总模型在不同阈值下性能。...我们还可以使用 plot_model 创建混淆矩阵特征重要性: plot_model(logreg, plot='confusion_matrix') plot_model(logreg, plot...除了在测试集上评估指标外,还返回包含两个新数据:predict_model 标签:预测 成绩:预测概率 默认情况下,在测试集上进行预测,当然我们也可以用自己指定数据来预测。...predict_model(logreg, data=new_data) 一旦我们对训练测试集结果满意,我们就可以使用具有一个 finalize_model 函数用全部数据重新模型。

    1K20

    NumPy Pandas 数据分析实用指南:1~6 全

    因此,所得数组第一第一元素为[0, 0]。 在第一第二中,我们有原始数组中元素[0, 2]。 然后,在第二第一中,我们具有原始数组第三第一元素。...我们将一个对象传递给包含将添加到现有对象中数据方法。 如果我们正在使用数据,则可以附加新或新。 我们可以使用concat函数添加,并使用dict,序列或数据进行连接。...也就是说,如果要基于索引选择,而要基于整数位置选择,请首先使用loc方法选择,然后使用iloc方法选择。 执行此操作时,如何选择数据元素没有任何歧义。 如果您只想选择一怎么办?...我们探索了 Pandas 序列数据并创建了它们。 我们还研究了如何数据添加到序列和数据中。 最后,我们介绍了保存数据。 在下一章中,我们将讨论算术,函数应用函数映射。...必须牢记是,涉及数据算法首先应用于数据,然后再应用于数据。 因此,数据将与单个标量,具有与该同名索引序列元素或其他涉及数据匹配。

    5.4K30

    Pandas 学习手册中文第二版:1~5

    创建数据期间对齐 选择数据特定 将切片应用于数据 通过位置标签选择数据 标量值查找 应用于数据布尔选择 配置 Pandas 我们使用以下导入配置语句开始本章中示例...访问数据数据 数据组成,并具有从特定中选择数据结构。 这些选择使用与Series相同运算符,包括[],.loc[].iloc[]。...具体而言,在本章中,我们将介绍: 重命名列 使用[].insert()添加 通过扩展添加 使用连接添加 重新排序列 替换内容 删除 添加 连接 通过扩展添加替换行 使用.drop...-2e/img/00195.jpeg)] 使用[].insert()添加 可以使用[]运算符将新添加数据。...-2e/img/00225.jpeg)] 总结 在本章中,您学习了如何使用 Pandas DataFrame对象执行几种常见数据操作,特别是通过添加或删除来更改DataFrame结构操作。

    8.3K10

    python数据分析——数据选择运算

    PythonPandas库为我们提供了强大数据选择工具。通过DataFrame结构化数据存储方式,我们可以轻松地按照进行数据选择。...而在选择时候可以传入列表,或者使用冒号来进行切片索引。...PythonPandas库为数据合并操作提供了多种合并方法,如merge()、join()concat()等方法。...代码输出结果如下所示: (2)使用多个键合并两个数据: 关键技术:使用’ id’键及’subject_id’键合并两个数据,并使用merge()对其执行合并操作。...: 四、数据运算 pandas具有大量数据计算函数,比如求计数、求和、求平均值、求最大值、最小值、中位数、众数、方差、标准差等。

    17310

    精通 Pandas:1~5

    一、Pandas数据分析简介 在本章中,我们解决以下问题: 数据分析动机 如何Python Pandas 用于数据分析 Pandas描述 使用 Pandas 好处 数据分析动机...Python Pandas 组合如何融入数据分析 Python 编程语言是当今新兴数据科学分析领域中增长最快语言之一。...使用ndarrays/列表字典 在这里,我们从列表字典中创建一个数据结构。 键将成为数据结构中标签,列表中数据将成为值。 注意如何使用np.range(n)生成行标签索引。...与 Numpy ndarrays相比,pandas 数据结构更易于使用且更加用户友好,因为在数据和面板情况下,它们提供索引索引。数据对象是 Pandas 中最流行使用最广泛对象。...有关 SQL 连接如何工作简单说明,请参考这里。 join函数 DataFrame.join函数用于合并两个具有不同且没有共同点数据。 本质上,这是两个数据纵向连接。

    19.1K10

    Python探索性数据分析,这样才容易掌握

    当基于多个数据集之间比较数据时,标准做法是使用(.shape)属性检查每个数据行数数。如图所示: ? 注意:左边是行数,右边是数;()。...我们这份数据第一个问题是 ACT 2017 ACT 2018 数据维度不一致。让我们使用( .head() )来更好地查看数据,通过 Pandas 库展示了每一前五,前五个标签值。...为了比较州与州之间 SAT ACT 数据,我们需要确保每个州在每个数据中都被平等地表示。这是一次创新机会来考虑如何数据之间检索 “State” 值、比较这些值并显示结果。...这可以使用与我们在 2018 年 ACT 数据集 定位删除重复 ‘Maine’ 值相同代码来完成: ?...为了与当前任务保持一致,我们可以使用 .drop() 方法删除多余,如下所示: ? 现在所有的数据具有相同维度! 不幸是,仍有许多工作要做。

    5K30

    Pandas 秘籍:1~5

    当列表具有标签相同数量元素时,此分配有效。 以下代码在每个索引对象上使用tolist方法来创建 Python 标签列表。...对于所有数据值始终是一种数据类型。 关系数据库也是如此。 总体而言,数据可能由具有不同数据类型组成。 在内部,Pandas相同数据类型一起存储在块中。...它们能够独立且同时选择。 准备 此秘籍向您展示如何使用.iloc.loc索引器从数据中选择。...同时选择数据 直接使用索引运算符是从数据中选择一或多正确方法。 但是,它不允许您同时选择。...索引具有get_loc方法,该方法接受索引标签并返回其整数位置。 我们找到要切片开始结束整数位置。 我们添加一个是因为用.iloc切片不包括最后一项。 步骤 3 将切片符号与一起使用

    37.5K10

    数据科学 IPython 笔记本 7.5 数据索引选择

    数据数据选择 回想一下,DataFrame在很多方面都类似二维或结构化数组,在其它方面莱斯共享相同索引Series结构字典。在我们探索此结构中数据选择时,记住些类比是有帮助。...;我们将在“使用 Pandas数据进行操作”中深入研究它。...在这里,Pandas 再次使用前面提到loc,ilocix索引器。...使用iloc索引器,我们可以索引底层数组,好像它是一个简单 NumPy 数组(使用隐式 Python 风格索引),但结果中保留了DataFrame索引标签: data.iloc[:3, :2]...38332521 Florida 170312 19552860 Illinois 149995 12882135 请记住,对于整数索引,ix索引器具有与整数索引Series对象相同潜在混淆

    1.7K20

    加速数据分析,这12种高效NumpyPandas函数为你保驾护航

    Pandas 数据统计包 6 种高效函数 Pandas 也是一个 Python 包,它提供了快速、灵活以及具有显著表达能力数据结构,旨在使处理结构化 (表格化、多维、异构) 时间序列数据变得既简单又直观...Pandas 适用于以下各类数据: 具有异构类型表格数据,如 SQL 表或 Excel 表; 有序无序 (不一定是固定频率) 时间序列数据; 带有/标签任意矩阵数据(同构类型或者是异构类型...简化将数据转换为 DataFrame 对象过程,而这些数据基本是 Python NumPy 数据结构中不规则、不同索引数据; 基于标签智能切片、索引以及面向大型数据子设定; 更加直观地合并以及连接数据集...Isin () 有助于选择特定具有特定(或多个)值。...,基于 dtypes 返回数据一个子集。

    7.5K30

    NumPy、Pandas中若干高效函数!

    我们都知道,Numpy 是 Python 环境下扩展程序库,支持大量维度数组矩阵运算;Pandas 也是 Python 环境下数据操作和分析软件包,以及强大数据分析库。...Pandas数据统计包6种高效函数 Pandas 也是一个 Python 包,它提供了快速、灵活以及具有显著表达能力数据结构,旨在使处理结构化 (表格化、多维、异构) 时间序列数据变得既简单又直观...Pandas 适用于以下各类数据: 具有异构类型表格数据,如SQL表或Excel表; 有序无序 (不一定是固定频率) 时间序列数据; 带有/标签任意矩阵数据(同构类型或者是异构类型); 其他任意形式统计数据集...DataFrame对象过程,而这些数据基本是PythonNumPy数据结构中不规则、不同索引数据; 基于标签智能切片、索引以及面向大型数据子设定; 更加直观地合并以及连接数据集; 更加灵活地重塑...Isin()有助于选择特定具有特定(或多个)值

    6.6K20

    精通 Pandas 探索性分析:1~4 全

    二、数据选择 在本章中,我们将学习使用 Pandas 进行数据选择高级技术,如何选择数据子集,如何数据集中选择多个如何Pandas 数据或一序列数据进行排序,如何过滤 Pandas 数据角色...Pandas 有一种选择方法,称为loc。 我们将使用loc方法从之前创建数据集中调用数据。...重命名删除 Pandas 数据 处理转换日期时间数据 处理SettingWithCopyWarning 将函数应用于 Pandas 序列或数据 将多个数据合并并连接成一个 使用 inplace...将多个数据合并并连接成一个 本节重点介绍如何使用 Pandas merge()concat()方法组合两个或多个数据。 我们还将探讨merge()方法以各种方式加入数据用法。...它仅包含在两个数据具有通用标签那些。 接下来,我们进行外部合并

    28.2K10

    12 种高效 Numpy Pandas 函数为你加速分析

    我们都知道,Numpy 是 Python 环境下扩展程序库,支持大量维度数组矩阵运算;Pandas 也是 Python 环境下数据操作和分析软件包,以及强大数据分析库。...Pandas 数据统计包 6 种高效函数 Pandas 也是一个 Python 包,它提供了快速、灵活以及具有显著表达能力数据结构,旨在使处理结构化 (表格化、多维、异构) 时间序列数据变得既简单又直观...Pandas 适用于以下各类数据: 具有异构类型表格数据,如 SQL 表或 Excel 表; 有序无序 (不一定是固定频率) 时间序列数据; 带有/标签任意矩阵数据(同构类型或者是异构类型...简化将数据转换为 DataFrame 对象过程,而这些数据基本是 Python NumPy 数据结构中不规则、不同索引数据; 基于标签智能切片、索引以及面向大型数据子设定; 更加直观地合并以及连接数据集...Isin () 有助于选择特定具有特定(或多个)值

    6.3K10

    加速数据分析,这12种高效NumpyPandas函数为你保驾护

    我们都知道,Numpy 是 Python 环境下扩展程序库,支持大量维度数组矩阵运算;Pandas 也是 Python 环境下数据操作和分析软件包,以及强大数据分析库。...Pandas 数据统计包 6 种高效函数 Pandas 也是一个 Python 包,它提供了快速、灵活以及具有显著表达能力数据结构,旨在使处理结构化 (表格化、多维、异构) 时间序列数据变得既简单又直观...Pandas 适用于以下各类数据: 具有异构类型表格数据,如 SQL 表或 Excel 表; 有序无序 (不一定是固定频率) 时间序列数据; 带有/标签任意矩阵数据(同构类型或者是异构类型...简化将数据转换为 DataFrame 对象过程,而这些数据基本是 Python NumPy 数据结构中不规则、不同索引数据; 基于标签智能切片、索引以及面向大型数据子设定; 更加直观地合并以及连接数据集...Isin () 有助于选择特定具有特定(或多个)值

    6.7K20
    领券