首页
学习
活动
专区
圈层
工具
发布

使用TensorFlow和深度混合学习进行时间序列预测

准备数据 在这一步中,我们需要对加载的数据进行转换和处理,以便将其作为输入传递给深度混合学习模型,然后我们可以开始训练过程。...以类似的方式,我们形成了测试和验证数据集,这是机器学习预测模型通常需要的。另外,请记住,对于一个预测模型来说,拥有更宽的观察窗口和更窄的预测窗口可以得到更好的结果。...,我们使用TensorFlow来形成模型并实现流。...但如果你想知道如何提高结果,我有以下建议: 更改窗口大小(增加或减少) 使用更多的训练数据(以解决过拟合问题) 使用更多的模型层或隐藏的单元 使用不同的损失函数和学习速率 我们看到损失曲线不是平滑的。...在我使用TensorFlow的深度学习进行后期时间序列预测时,我只使用了一个简单的深度神经网络就得到了更好的结果。

1.4K20

使用TensorFlow动手实现的简单的股价预测模型

本文是一个通过模拟预测股票,教会大家如何动手操作TensorFlow的教程,结果不具有权威性。因为股票价格的实际预测是一项非常复杂的任务,尤其是像本文这种按分钟的预测。...因此,必须对训练数据进行缩放统计计算,然后必须应用于测试数据。否则,在预测时使用未来的信息,通常偏向于正向预测指标。...占位符用于在图中存储输入数据和目标数据,而向量被用作图中的灵活容器在图形执行过程中允许更改。权重和偏置被表示为向量以便在训练中调整。向量需要在模型训练之前进行初始化。稍后我们会详细讨论。...由于神经网络是使用数值优化技术进行训练的,所以优化问题的出发点是寻找解决底层问题的关键。在TensorFlow中有不同的初始化器,每个都有不同的初始化方法。...此时的占位符,X和Y发挥作用。他们存储输入和目标数据,并将其作为输入和目标在网络中显示。 采样数据X批量流经网络,到达输出层。在那里,TensorFlow将模型预测与当前批量的实际观测目标Y进行比较。

1.6K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用LSTM深度学习模型进行温度的时间序列单步和多步预测

    本文的目的是提供代码示例,并解释使用python和TensorFlow建模时间序列数据的思路。 本文展示了如何进行多步预测并在模型中使用多个特征。...使用训练好的模型,我们可以预测值并将其与原始值进行比较。...使用训练好的模型,我们可以预测值并将其与原始值进行比较。 ? 中位数绝对误差为0.34摄氏度,平均值为0.48摄氏度。 要预测提前24小时,唯一需要做的就是更改超参数。...该模型将尝试使用之前(一周)的168小时来预测接下来的24小时值。...总结,本文介绍了在对时间序列数据进行建模和预测时使用的简单管道示例: 读取,清理和扩充输入数据 为滞后和n步选择超参数 为深度学习模型选择超参数 初始化NNMultistepModel()类 拟合模型

    2.9K21

    如何使用sklearn进行在线实时预测(构建真实世界中可用的模型)

    推荐阅读时间:10min~12min 主题:如何构建真实世界可用的ML模型 Python 作为当前机器学习中使用最多的一门编程语言,有很多对应的机器学习库,最常用的莫过于 scikit-learn 了...我们介绍下如何使用sklearn进行实时预测。先来看下典型的机器学习工作流。 ? 解释下上面的这张图片: 绿色方框圈出来的表示将数据切分为训练集和测试集。...红色方框的上半部分表示对训练数据进行特征处理,然后再对处理后的数据进行训练,生成 model。 红色方框的下半部分表示对测试数据进行特征处理,然后使用训练得到的 model 进行预测。...模型的保存和加载 上面我们已经训练生成了模型,但是如果我们程序关闭后,保存在内存中的模型对象也会随之消失,也就是说下次如果我们想要使用模型预测时,需要重新进行训练,如何解决这个问题呢?...# 使用加载生成的模型预测新样本 new_model.predict(new_pred_data) 构建实时预测 前面说到的运行方式是在离线环境中运行,在真实世界中,我们很多时候需要在线实时预测,一种解决方案是将模型服务化

    4.6K31

    CCPM & FGCNN:使用 CNN 进行特征生成的 CTR 预测模型

    前言 今天主要通过两篇论文介绍如何将 CNN 应用在传统的结构化数据预测任务中,尽量以精简的语言说明主要问题,并提供代码实现和运行 demo ,细节问题请参阅论文。...基于点击率预测任务和自然语言处理中一些任务的相似性(大规模稀疏特征), NLP 的一些方法和 CTR 预测任务的方法其实也是可以互通的。...表示的每次对连续的width个特征进行卷积运算,之后使用一个Flexible pooling机制进行池化操作进行特征聚合和压缩表示,堆叠若干层后将得到特征矩阵作为 MLP 的输入,得到最终的预测结果。...2个: 使用重组层进行特征生成缓解了 CCPM 中 CNN 无法有效捕获全局组合特征的问题 FGCNN 作为一种特征生成方法,可以和任意模型进行组合 模型结构 分组嵌入 由于原始特征既要作为后续模型的输入...实验结果对比 IPNN-FGCNN 于其他 stoa 模型的对比 作为特征生成模型的效果 核心代码 这里分两部分介绍,一个是 FGCNN 的特征生成模块,一个使用 FGCNN 进行特征扩充的 IPNN

    2.3K30

    命名实体识别之使用tensorflow的bert模型进行微调

    我们知道tensorflow的官方bert模型里面包含了很多内容,在进行微调时有许多部分都是我们用不到的,我们需要截取一些用到的部分,使得我们能够更容易进行扩展,接下来本文将进行一一讲解。...1、需要的文件 tokenization.py:用于对数据进行处理,主要是分词用; modeling.py:bert模型; optimization.py:用于生成优化器; ?...预训练的模型文件; 2、导入相关的包 import tensorflow as tf import numpy as np import pandas as pd from tf_utils.bert_modeling...; 4、使用模型 config = Config() do_lower_case = False tokenizer = tokenization.FullTokenizer(vocab_file=config.vocab_file...bert相关的参数,然后创建相关的优化器;接下来的就是正常的训练和测试的代码了; 4、其它的一些代码 配置文件:config.py import sys sys.path.append("/content

    5.6K20

    使用Transformer 模型进行时间序列预测的Pytorch代码示例

    时间序列预测是一个经久不衰的主题,受自然语言处理领域的成功启发,transformer模型也在时间序列预测有了很大的发展。本文可以作为学习使用Transformer 模型的时间序列预测的一个起点。...模型的张量之前,需要将其分为训练集和验证集。...多层感知器(MLP)接受最终编码输入来产生预测。嵌入维数、每个Transformer块中的注意头数和dropout概率是模型的主要超参数。...下面是单个Transformer块的实现和整体预测模型: class transformer_block(nn.Module): def __init__(self,embed_size...这个比赛采用均方根对数误差(RMSLE)作为评价指标,公式为: 鉴于预测经过对数转换,预测低于-1的负销售额(这会导致未定义的错误)需要进行处理,所以为了避免负的销售预测和由此产生的NaN损失值,在MLP

    1.8K11

    使用 OpenCV 进行图像中的性别预测和年龄检测

    应用 在监控计算机视觉中,经常使用年龄和性别预测。计算机视觉的进步使这一预测变得更加实用,更容易为公众所接受。由于其在智能现实世界应用中的实用性,该研究课题取得了重大进展。...实施 现在让我们学习如何使用 Python 中的 OpenCV 库通过相机或图片输入来确定年龄和性别。 使用的框架是 Caffe,用于使用原型文件创建模型。...这就是我们将用来执行经过训练模型的内容。虽然.pb 文件包含二进制格式的 protobuf,但.pbtxt 文件包含文本格式的 protobuf。包含 TensorFlow 文件。....设置模型的平均值以及要从中进行分类的年龄组和性别列表。...在这篇文章中,我们学习了如何创建一个年龄预测器,它也可以检测你的脸并用边框突出显示。

    2.7K20

    使用语言模型和深度学习进行单序列蛋白质结构预测

    Single-sequence protein structure prediction using a language model and deep learning 论文摘要 AlphaFold2 和相关计算系统使用以多序列比对...(MSA) 编码的深度学习和共同进化关系来预测蛋白质结构。...尽管这些系统实现了很高的预测准确性,但挑战仍然存在于 (1) 无法生成 MSA 的孤儿和快速进化蛋白质的预测; (2) 设计结构的快速探索; (3) 了解溶液中多肽自发折叠的规律。...在这里,我们报告了端到端可微循环几何网络 (RGN) 的开发,该网络使用蛋白质语言模型 (AminoBERT) 从未对齐的蛋白质中学习潜在的结构信息。...这些发现证明了蛋白质语言模型在结构预测中相对于 MSA 的实践和理论优势。 论文链接 https://doi.org/10.1038/s41587-022-01432-w

    58010

    教程 | 如何使用TensorFlow和自编码器模型生成手写数字

    本文详细介绍了如何使用 TensorFlow 实现变分自编码器(VAE)模型,并通过简单的手写数字生成案例一步步引导读者实现这一强大的生成模型。...然后,在尝试生成数据的时候,我们只需要从这种分布中进行采样,然后把样本喂给解码器就行,解码器会返回新的对象,看上去就和我们用来训练网络的对象一样。...下面我们将介绍如何使用 Python 和 TensorFlow 实现这一过程,我们要教会我们的网络来画 MNIST 字符。 第一步加载训练数据 首先我们来执行一些基本的导入操作。...我们的输入数据 X_in 是一批一批的 MNIST 字符,网络会学习如何重建它们。然后在一个占位符 Y 中输出它们,输出和输入具有相同的维度。...生成的大多数字符都和人类手写的是一样的。

    1.1K110

    教程 | 如何使用TensorFlow和自编码器模型生成手写数字

    选自Medium 机器之心编译 参与:Nurhachu Null、蒋思源 本文详细介绍了如何使用 TensorFlow 实现变分自编码器(VAE)模型,并通过简单的手写数字生成案例一步步引导读者实现这一强大的生成模型...然后,在尝试生成数据的时候,我们只需要从这种分布中进行采样,然后把样本喂给解码器就行,解码器会返回新的对象,看上去就和我们用来训练网络的对象一样。...下面我们将介绍如何使用 Python 和 TensorFlow 实现这一过程,我们要教会我们的网络来画 MNIST 字符。 第一步加载训练数据 首先我们来执行一些基本的导入操作。...我们的输入数据 X_in 是一批一批的 MNIST 字符,网络会学习如何重建它们。然后在一个占位符 Y 中输出它们,输出和输入具有相同的维度。...生成的大多数字符都和人类手写的是一样的。

    1.1K110

    使用PyTorch进行主动迁移学习:让模型预测自身的错误

    如果这个用例碰巧是主动学习,那么我们将把机器学习中最有趣的部分应用到解决机器学习中最重要的问题中:人类和人工智能如何一起解决问题?...模型预测标签为「a」、「B」、「C」或「D」,单独的数据集标签为「W」、「X」、「Y」和「Z」。再训练模型的最后一层模型现在能够预测标签「W」、「X」、「Y」和「Z」。...这是主动迁移学习三个核心观点中的第一个: 观点 1:你可以使用迁移学习,通过让你的模型预测自己的错误,来发现模型哪里被混淆了。...注意,代表性采样的示例使用所有隐藏层,并且还添加了额外的新层,而不确定性采样和 ATLAS 示例是在最终隐藏层之后的简单二进制预测。...相比之下,不确定性采样和 ATLAS 示例只使用最后一层,因为模型的最后一层已经最小化不确定性,因此在较早的层中不太可能找到更多的信息,如果包含较早的层,则更容易过度拟合。

    1.5K30

    使用TensorFlow和DLTK进行生物医学图像分析的介绍

    它为经典的应用程序提供特殊的操作和功能、模型的实现、教程(如本文中所使用的)和代码示例。...为此,它需要专业标题信息,我们通过一些属性来考虑使用深度学习: 存储有关如何重建图像信息的规格和大小(例如,使用size向量将卷分解为三维)。...空间标准化:对图像方位进行标准化,使模型避免必须学习所有可能的方向,这大大减少了所需的训练图像的数量。我们还考虑了三维像素距离,即使从同一扫描仪获取,图像之间也可能有差异。...强度和空间增强技术的例子 关于扩充和数据I / O的重要说明:根据需要或有用的扩充,某些操作仅在python中可用(例如随机变形),这意味着如果使用使用原始TensorFlow的读取方法(即TFRecords...图像超分辨率(super-resolution):原始目标图像,下采样输入图像,线性上采样图像,预测超分辨率 单图像超分辨率旨在学习如何从低分辨率输入上采样和重构高分辨率图像。

    3.5K40

    Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测

    在本文中,我将解释如何将 GARCH,EGARCH和 GJR-GARCH 模型与Monte-Carlo 模拟结合使用, 以建立有效的预测模型。...我将展示如何使用 GARCH 模型进行风险评估。 GARCH 模型的一个关键限制 是对其参数施加非负约束,以确保条件方差的正性。这样的约束会给估计GARCH 模型带来困难 。...用ADF,KPSS,DFGLS,PP和ZA统计量对单位根和平稳性进行的检验均显示出显着性,表明使用 GARCH型模型来拟合收益序列是合适的。 非线性动力学 使用_Hurst_对平稳性的研究 。...使用此时期的数据训练的模型有望具有出色的预测能力。 当处理长时间波动的原油价格的时间序列数据时,GARCH (2,2)模型估计了方差的持久性 。 进行了蒙特卡洛分析,以检查结果的稳健性。...本文摘选《Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测》

    3.7K10

    .| 使用自回归生成模型进行蛋白质设计和变体预测

    实验结果表明,该模型能够很好地预测错义突变,序列片段的插入和缺失,并且能够泛化到超出了预测和设计范围的序列空间域。 ?...捕获了功能序列必不可少的约束条件(图1)。作者提出的自回归模型可以使用序列之前的所有氨基酸来预测序列中的某个特定位置的氨基酸,通过自回归似然将概率分布 ? 沿着序列分解为先前元素的条件概率的乘积。...该模型的任务是在给定序列中某个位置之前的氨基酸的情况下,预测序列中该位置的氨基酸。模型的因果结构允许对一组序列进行有效训练,推断变异效应以及对新序列进行采样。...之后,作者根据深层突变扫描实验对模型预测能力进行基准测试,与在相同序列比对中训练的最新模型的Spearman的秩相关性进行比较。...图3 抗体库的生化特性分布 总结 该文章中,作者展示了如何在不依赖序列比对的情况下,使用神经网络驱动的自回归生成模型对序列约束进行建模,并为以前无法实现的应用(如纳米抗体)设计新颖的功能序列。

    1.4K20

    使用Tensorflow和公共数据集构建预测和应用问题标签的GitHub应用程序

    自动标记问题有助于组织和查找信息 为了展示如何创建应用程序,将引导完成创建可自动标记问题的GitHub应用程序的过程。此应用程序的所有代码(包括模型训练步骤)都位于GitHub存储库中。...无论标题如何,在其正文中具有相同内容的问题。通过仅考虑前75%的字符以及在问题正文中持续75%的字符来删除进一步的重复。 使用此链接查看用于对问题进行分类和重复数据删除问题的SQL查询。...模型有两个输入:问题标题和正文,并将每个问题分类为错误,功能请求或问题。下面是使用tensorflow.Keras定义的模型架构: ? 关于这个模型的一些注意事项: 不必使用深度学习来解决此问题。...步骤5:使用Flask响应有效负载。 现在有了一个可以进行预测的模型,以及一种以编程方式为问题添加注释和标签的方法(步骤2),剩下的就是将各个部分粘合在一起。...此截图来自此问题 如上所述,通过要求用户对prediction或react对预测作出反应来请求显式反馈。将这些反应存储在一个数据库中,这样就可以重新训练和调试模型。

    4K10

    使用折外预测(oof)评估模型的泛化性能和构建集成模型

    折外预测的概念与样本外预测(Out-of-Sample )的概念直接相关,因为这两种情况下的预测都是在模型训练期间未使用的样本上进行的,并且都可以估计模型在对新数据进行预测时的性能。...折外预测也是一种样本外预测,尽管它使用了k-fold交叉验证来评估模型。 下面我们看看折外预测的两个主要功能 使用折外预测进行模型的评估 折外预测最常见的用途是评估模型的性能。...使用诸如错误或准确率之类的评分指标对未用于模型训练的数据进行预测和评估。...相当用于使用了新数据(训练时不可见的数据)进行预测和对模型性能的估计,使用不可见的数据可以评估模型的泛化性能,也就是模型是否过拟合了。...这个模型的工作是学习如何最好地结合和纠正其他模型使得这些(其他)模型的折外预测能够获得更好的性能。

    1.3K20
    领券