首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

PySpark 数据类型定义 StructType & StructField

虽然 PySpark 从数据中推断出模式,但有时我们可能需要定义自己的列名和数据类型,本文解释了如何定义简单、嵌套和复杂的模式。...StructType是StructField的集合,它定义了列名、列数据类型、布尔值以指定字段是否可以为空以及元数据。...DataFrame 结构 使用 PySpark SQL 函数 struct(),我们可以更改现有 DataFrame 的结构并向其添加新的 StructType。...下面学习如何将列从一个结构复制到另一个结构并添加新列。PySpark Column 类还提供了一些函数来处理 StructType 列。...中是否存在列 如果要对DataFrame的元数据进行一些检查,例如,DataFrame中是否存在列或字段或列的数据类型;我们可以使用 SQL StructType 和 StructField 上的几个函数轻松地做到这一点

1.3K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    独家 | PySpark和SparkSQL基础:如何利用Python编程执行Spark(附代码)

    作者:Pinar Ersoy 翻译:孙韬淳 校对:陈振东 本文约2500字,建议阅读10分钟 本文通过介绍Apache Spark在Python中的应用来讲解如何利用PySpark包执行常用函数来进行数据处理工作...在这篇文章中,处理数据集时我们将会使用在PySpark API中的DataFrame操作。...5) 分别显示子字符串为(1,3),(3,6),(1,6)的结果 6、增加,修改和删除列 在DataFrame API中同样有数据处理函数。...('new_column', F.lit('This is a new column')) display(dataframe) 在数据集结尾已添加新列 6.2、修改列 对于新版DataFrame API...13.2、写并保存在文件中 任何像数据框架一样可以加载进入我们代码的数据源类型都可以被轻易转换和保存在其他类型文件中,包括.parquet和.json。

    13.7K21

    PySpark SQL——SQL和pd.DataFrame的结合体

    Column:DataFrame中每一列的数据抽象 types:定义了DataFrame中各列的数据类型,基本与SQL中的数据类型同步,一般用于DataFrame数据创建时指定表结构schema functions...DataFrame既然可以通过其他类型数据结构创建,那么自然也可转换为相应类型,常用的转换其实主要还是DataFrame=>rdd和DataFrame=>pd.DataFrame,前者通过属性可直接访问...select等价实现,二者的区别和联系是:withColumn是在现有DataFrame基础上增加或修改一列,并返回新的DataFrame(包括原有其他列),适用于仅创建或修改单列;而select准确的讲是筛选新列...,仅仅是在筛选过程中可以通过添加运算或表达式实现创建多个新列,返回一个筛选新列的DataFrame,而且是筛选多少列就返回多少列,适用于同时创建多列的情况(官方文档建议出于性能考虑和防止内存溢出,在创建多列时首选...select) show:将DataFrame显示打印 实际上show是spark中的action算子,即会真正执行计算并返回结果;而前面的很多操作则属于transform,仅加入到DAG中完成逻辑添加

    10K20

    PySpark︱DataFrame操作指南:增删改查合并统计与数据处理

    笔者最近需要使用pyspark进行数据整理,于是乎给自己整理一份使用指南。pyspark.dataframe跟pandas的差别还是挺大的。...— 2.2 新增数据列 withColumn— withColumn是通过添加或替换与现有列有相同的名字的列,返回一个新的DataFrame result3.withColumn('label', 0)...(参考:王强的知乎回复) python中的list不能直接添加到dataframe中,需要先将list转为新的dataframe,然后新的dataframe和老的dataframe进行join操作,...; Pyspark DataFrame的数据反映比较缓慢,没有Pandas那么及时反映; Pyspark DataFrame的数据框是不可变的,不能任意添加列,只能通过合并进行; pandas比Pyspark...使用的逻辑是merge两张表,然后把匹配到的删除即可。

    30.5K10

    PySpark 读写 JSON 文件到 DataFrame

    本文中,云朵君将和大家一起学习了如何将具有单行记录和多行记录的 JSON 文件读取到 PySpark DataFrame 中,还要学习一次读取单个和多个文件以及使用不同的保存选项将 JSON 文件写回...文件的功能,在本教程中,您将学习如何读取单个文件、多个文件、目录中的所有文件进入 DataFrame 并使用 Python 示例将 DataFrame 写回 JSON 文件。...使用 PySpark StructType 类创建自定义 Schema,下面我们启动这个类并使用添加方法通过提供列名、数据类型和可为空的选项向其添加列。...NullValues 使用 nullValues 选项,可以将 JSON 中的字符串指定为 null。...注意:除了上述选项外,PySpark JSON 数据集还支持许多其他选项。

    1.1K20

    Spark Extracting,transforming,selecting features

    是一个双精度类型的数值列,我们想要将其转换为类别型,设置numBuckets为3,也就是放入3个桶中,得到下列DataFrame: id hour result 0 18.0 2.0 1 19.0 2.0...在这个例子中,Imputer会替换所有Double.NaN为对应列的均值,a列均值为3,b列均值为4,转换后,a和b中的NaN被3和4替换得到新列: a b out_a out_b 1.0 Double.NaN...,类似R中的公式用于线性回归一样,字符串输入列会被one-hot编码,数值型列会被强转为双精度浮点,如果标签列是字符串,那么会首先被StringIndexer转为double,如果DataFrame中不存在标签列...模型都有方法负责每个操作; 特征转换 特征转换是一个基本功能,将一个hash列作为新列添加到数据集中,这对于降维很有用,用户可以通过inputCol和outputCol指定输入输出列; LSH也支持多个...,如果输入未转换,那么会自动转换,这种情况下,哈希signature作为outputCol被创建; 一个用于展示每个输出行与目标行之间距离的列会被添加到输出数据集中; 注意:当哈希桶中没有足够候选数据点时

    21.9K41

    Spark SQL

    当用户向Hive输入一段命令或查询(即HiveQL 语句)时, Hive需要与Hadoop交互来完成该操作。...Shark的设计导致了两个问题: 一是执行计划优化完全依赖于Hive,不方便添加新的优化策略 二是因为Spark是线程级并行,而MapReduce是进程级并行,因此,Spark在兼容Hive的实现上存在线程安全问题...SparkSession支持从不同的数据源加载数据,并把数据转换成DataFrame,并且支持把DataFrame转换成SQLContext自身中的表,然后使用SQL语句来操作数据。...在创建DataFrame时,可以使用spark.read操作,从不同类型的文件中加载数据创建DataFrame。...DataFrame,名称为peopleDF,把peopleDF保存到另外一个JSON文件中,然后,再从peopleDF中选取一个列(即name列),把该列数据保存到一个文本文件中。

    8210

    Spark SQL实战(04)-API编程之DataFrame

    因此,如果需要访问Hive中的数据,需要使用HiveContext。 元数据管理:SQLContext不支持元数据管理,因此无法在内存中创建表和视图,只能直接读取数据源中的数据。...Spark DataFrame可看作带有模式(Schema)的RDD,而Schema则是由结构化数据类型(如字符串、整型、浮点型等)和字段名组成。...熟练程度:如果你或你的团队已经很熟悉Python,那么使用PySpark也许更好一些,因为你们不需要再去学习新的编程语言。相反,如果已经对R语言很熟悉,那么继续使用R语言也许更为方便。...在Scala和Java中,DataFrame由一组Rows组成的Dataset表示: Scala API中,DataFrame只是Dataset[Row]的类型别名 Java API中,用户需要使用Dataset...通过调用该实例的方法,可以将各种Scala数据类型(如case class、元组等)与Spark SQL中的数据类型(如Row、DataFrame、Dataset等)之间进行转换,从而方便地进行数据操作和查询

    4.2K20

    PySpark 中的机器学习库

    如果派生自抽象的Estimator类,则新模型必须实现.fit(…)方法,该方法给DataFrame中的数据以及一些默认或用户指定的参数泛化模型。...NaiveBayes:基于贝叶斯定理,这个模型使用条件概率来分类观测。 PySpark ML中的NaiveBayes模型支持二元和多元标签。...DecisionTreeRegressor:与分类模型类似,标签是连续的而不是二元或多元的。 3、聚类 聚类是一种无监督的模型。PySpark ML包提供了四种模型。...KMeans : 将数据分成k个簇,随机生成k个初始点作为质心,将数据集中的数据按照距离质心的远近分到各个簇中,将各个簇中的数据求平均值,作为新的质心,重复上一步,直到所有的簇不再改变。...都会完成一个任务,如数据集处理转化,模型训练,参数设置或数据预测等,这样的 PipelineStage 在 ML 里按照处理问题类型的不同都有相应的定义和实现。

    3.4K20

    使用CDSW和运营数据库构建ML应用1:设置和基础

    对于想要利用存储在HBase中的数据的数据专业人士而言,最新的上游项目“ hbase-connectors”可以与PySpark一起使用以进行基本操作。...在本博客系列中,我们将说明如何为基本的Spark使用以及CDSW中维护的作业一起配置PySpark和HBase 。...在非CDSW部署中将HBase绑定添加到Spark运行时 要部署Shell或正确使用spark-submit,请使用以下命令来确保spark具有正确的HBase绑定。...第一个也是最推荐的方法是构建目录,该目录是一种Schema,它将在指定表名和名称空间的同时将HBase表的列映射到PySpark的dataframe。...使用hbase.columns.mapping 在编写PySpark数据框时,可以添加一个名为“ hbase.columns.mapping”的选项,以包含正确映射列的字符串。

    2.7K20

    Pyspark学习笔记(四)---弹性分布式数据集 RDD (上)

    用该对象将数据读取到DataFrame中,DataFrame是一种特殊的RDD,老版本中称为SchemaRDD。...4.RDD持久化与重用 RDD主要创建和存在于执行器的内存中。默认情况下,RDD是易逝对象,仅在需要的时候存在。 在它们被转化为新的RDD,并不被其他操作所依赖后,这些RDD就会被删除。...6.窄依赖(窄操作)- 宽依赖(宽操作): 窄操作: ①多个操作可以合并为一个阶段,比如同时对一个数据集进行的map操作或者filter操作可以在数据集的各元 素的一轮遍历中处理; ②子RDD只依赖于一个父...DataFrame:以前的版本被称为SchemaRDD,按一组有固定名字和类型的列来组织的分布式数据集。DataFrame等价于sparkSQL中的关系型表!...所以我们在使用sparkSQL的时候常常要创建这个DataFrame,在sparkSQL部分会提及。 HadoopRDD:提供读取存储在HDFS上的数据的RDD。

    2K20

    Spark Pipeline官方文档

    API介绍的主要概念,以及是从sklearn的哪部分获取的灵感; DataFrame:这个ML API使用Spark SQL中的DataFrame作为ML数据集来持有某一种数据类型,比如一个DataFrame...转换为原DataFrame+一个预测列的新的DataFrame的转换器; Estimator:预测器是一个可以fit一个DataFrame得到一个转换器的算法,比如一个学习算法是一个使用DataFrame...,然后输出一个新的DataFrame包含标签列; Estimators - 预测器 一个预测器是一个学习算法或者任何在数据上使用fit和train的算法的抽象概念,严格地说,一个预测器需要实现fit方法...Pipeline可以操作DataFrame可变数据类型,因此它不能使用编译期类型检查,Pipeline和PipelineModel在真正运行会进行运行时检查,这种类型的检查使用DataFrame的schema...,schema是一种对DataFrmae中所有数据列数据类型的描述; 唯一Pipeline阶段:一个Pipeline阶段需要是唯一的实例,比如同一个实例myHashingTF不能两次添加到Pipeline

    4.7K31

    大数据开发!Pandas转spark无痛指南!⛵

    可以通过如下代码来检查数据类型:df.dtypes# 查看数据类型 df.printSchema() 读写文件Pandas 和 PySpark 中的读写文件方式非常相似。...在 Spark 中,使用 filter方法或执行 SQL 进行数据选择。...Pandas在 Pandas 中,有几种添加列的方法:seniority = [3, 5, 2, 4, 10]# 方法1df['seniority'] = seniority# 方法2df.insert...(2, "seniority", seniority, True) PySpark在 PySpark 中有一个特定的方法withColumn可用于添加列:seniority = [3, 5, 2, 4,...,dfn]df = unionAll(*dfs) 简单统计Pandas 和 PySpark 都提供了为 dataframe 中的每一列进行统计计算的方法,可以轻松对下列统计值进行统计计算:列元素的计数列元素的平均值最大值最小值标准差三个分位数

    8.2K72

    【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧

    本文将详细介绍如何使用 Pandas 实现机器学习中的特征工程、数据清洗、时序数据处理、以及如何与其他工具配合进行数据增强和特征选择。...1.1 缺失值处理 数据中的缺失值常常会影响模型的准确性,必须在预处理阶段处理。Pandas 提供了丰富的缺失值处理方法: 删除缺失值:可以删除包含缺失值的行或列。...3.1 自定义函数与 apply() 操作 Pandas 的 apply() 方法允许我们将自定义函数应用于 DataFrame 或 Series,这非常适合在数据处理中重复使用逻辑。...中的特定列进行自定义计算并生成新的列。...4.1 数据增强策略 数据增强可以通过各种方式实现,例如添加噪声、随机缩放或旋转图像、改变特征值等。在处理非图像数据时,可以通过生成随机噪声或插值等方法来增加数据多样性。

    23910

    Spark MLlib

    二、机器学习流水线 (一)机器学习流水线概念 在介绍流水线之前,先来了解几个重要概念: DataFrame:使用Spark SQL中的DataFrame作为数据集,它可以容纳各种数据类型。...例如,DataFrame中的列可以是存储的文本、特征向量、真实标签和预测的标签等。 Transformer:翻译成转换器,是一种可以将一个DataFrame转换为另一个DataFrame的算法。...技术上,Transformer实现了一个方法transform(),它通过附加一个或多个列将一个DataFrame转换为另一个DataFrame。...(三)构建一个机器学习流水线 以逻辑斯蒂回归为例,构建一个典型的机器学习过程,来具体介绍一下流水线是如何应用的。...1、StringIndexer StringIndexer转换器可以把一列类别型的特征(或标签)进行编码,使其数值化,索引的范围从0开始,该过程可以使得相应的特征索引化,使得某些无法接受类别型特征的算法可以使用

    6900

    在机器学习中处理大量数据!

    在机器学习实践中的用法,希望对大数据学习的同学起到抛砖引玉的作用。...的特性: 分布式:可以分布在多台机器上进行并行处理 弹性:计算过程中内存不够时,它会和磁盘进行数据交换 基于内存:可以全部或部分缓存在内存中 只读:不能修改,只能通过转换操作生成新的 RDD 2.Pandas...#dtypes用来看数据变量类型 cat_features = [item[0] for item in df.dtypes if item[1]=='string'] # 需要删除 income列,...原来是使用VectorAssembler直接将特征转成了features这一列,pyspark做ML时 需要特征编码好了并做成向量列, 到这里,数据的特征工程就做好了。...,需要通过UCI提供的数据预测个人收入是否会大于5万,本节用PySpark对数据进行了读取,特征的编码以及特征的构建,并分别使用了逻辑回归、决策树以及随机森林算法展示数据预测的过程。

    2.3K30

    独家 | 一文读懂PySpark数据框(附实例)

    本文中我们将探讨数据框的概念,以及它们如何与PySpark一起帮助数据分析员来解读大数据集。 数据框是现代行业的流行词。...数据框广义上是一种数据结构,本质上是一种表格。它是多行结构,每一行又包含了多个观察项。同一行可以包含多种类型的数据格式(异质性),而同一列只能是同种类型的数据(同质性)。...数据框通常除了数据本身还包含定义数据的元数据;比如,列和行的名字。 我们可以说数据框不是别的,就只是一种类似于SQL表或电子表格的二维数据结构。...数据框结构 来看一下结构,亦即这个数据框对象的数据结构,我们将用到printSchema方法。这个方法将返回给我们这个数据框对象中的不同的列信息,包括每列的数据类型和其可为空值的限制条件。 3....到这里,我们的PySpark数据框教程就结束了。 我希望在这个PySpark数据框教程中,你们对PySpark数据框是什么已经有了大概的了解,并知道了为什么它会在行业中被使用以及它的特点。

    6K10
    领券