首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

问与答112:如何查找一列中的内容是否在另一列中并将找到的字符添加颜色?

Q:我在列D的单元格中存放着一些数据,每个单元格中的多个数据使用换行分开,列E是对列D中数据的相应描述,我需要在列E的单元格中查找是否存在列D中的数据,并将找到的数据标上颜色,如下图1所示。 ?...图1 如何使用VBA代码实现?...(iDisease)) End If Loop Next iDisease Next rCell End Sub 代码中使用...Split函数以回车符来拆分单元格中的数据并存放到数组中,然后遍历该数组,在列E对应的单元格中使用InStr函数来查找是否出现了该数组中的值,如果出现则对该值添加颜色。...Bug:通常是交替添加红色和绿色,但是当句子中存在多个匹配或者局部匹配时,颜色会打乱。

7.2K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    在 SQL 中,如何使用子查询来获取满足特定条件的数据?

    在 SQL 中,可以使用子查询来获取满足特定条件的数据。子查询是嵌套在主查询中的查询语句,它返回一个结果集,可以用来过滤主查询的结果。...下面是使用子查询来获取满足特定条件的数据的一般步骤: 在主查询中使用子查询,将子查询的结果作为条件。 子查询可以在主查询中的 WHERE 子句、FROM 子句或 HAVING 子句中使用。...子查询可以返回单个值或多个值,具体取决于使用的运算符和子查询的语法。 以下是一些示例: 使用子查询在 WHERE 子句中过滤数据: SELECT column1, column2, ......FROM table WHERE column IN (SELECT column FROM table WHERE condition); 使用子查询在 FROM 子句中创建临时表: SELECT column1...FROM (SELECT column FROM table WHERE condition) AS temp_table; 使用子查询在 HAVING 子句中过滤数据: SELECT column1,

    24010

    对比Excel,更强大的Python pandas筛选

    fr=aladdin')[1] 按单个条件筛选数据框架 从世界500强列表中选择中公司,我们可以使用.loc[]来实现。注意,这里使用的是方括号而不是括号()。...如果不需要新数据框架中的所有列,只需将所需的列名传递到.loc[]中即可。例如,仅需要选择最新排名、公司名称和营业收入,我们可以执行以下操作。注意,它只返回我们指定的3列。...图2 发生了什么(原理) 了解事情究竟是怎么发生的很重要,这将帮助我们理解如何在pandas上使用筛选。...看看下面的Excel屏幕截图,添加了一个新列,名为“是否中国”,还使用了一个简单的IF公式来评估一行是否“总部所在国家”为中国,该公式返回1或0。实际上,我正在检查每一行的值。...在现实生活中,我们经常需要根据多个条件进行筛选,接下来,我们将介绍如何在pandas中进行一些高级筛选。

    3.9K20

    向量化操作简介和Pandas、Numpy示例

    在Pandas中可以对整个列或Series执行操作,而无需编写显式循环。这种高效的方法利用了底层优化的库,使您的代码更快、更简洁。...向量化操作示例 1、基本算术运算 一个具有两列的DataFrame, ' a '和' B ',我们希望以元素方式添加这两列,并将结果存储在新列' C '中。...,加法运算df['A'] + df['B']同时应用于整个列'A'和'B',结果存储在列'C'中。...3、条件操作 也将矢量化用于条件操作,比如基于列a中的条件创建一个新的列D: import pandas as pd data = {'A': [1, 2, 3]} df = pd.DataFrame...让我们以Python和NumPy为例,探索向量化如何加快代码的速度。 传统的基于循环的处理 在许多编程场景中,可能需要对数据元素集合执行相同的操作,例如逐个添加两个数组或对数组的每个元素应用数学函数。

    86920

    【如何在 Pandas DataFrame 中插入一列】

    然而,对于新手来说,在DataFrame中插入一列可能是一个令人困惑的问题。在本文中,我们将分享如何解决这个问题的方法,并帮助读者更好地利用Pandas进行数据处理。...在实际数据处理中,我们经常需要在DataFrame中添加新的列,以便存储计算结果、合并数据或者进行其他操作。...解决在DataFrame中插入一列的问题是学习和使用Pandas的必要步骤,也是提高数据处理和分析能力的关键所在。 在 Pandas DataFrame 中插入一个新列。...在这个例子中,我们使用numpy的where函数,根据分数的条件判断,在’Grade’列中插入相应的等级。...总结: 在Pandas DataFrame中插入一列是数据处理和分析的重要操作之一。通过本文的介绍,我们学会了使用Pandas库在DataFrame中插入新的列。

    1.1K10

    1000+倍!超强Python『向量化』数据处理提速攻略

    这是一个非常基本的条件逻辑,我们需要为lead status创建一个新列。 我们使用Pandas的优化循环函数apply(),但它对我们来说太慢了。...看下面的例子: numpy.where()它从我们的条件中创建一个布尔数组,并在条件为真或假时返回两个参数,它对每个元素都这样做。这对于在Dataframe中创建新列非常有用。...如果我们在Series添加了.values ,它的作用是返回一个NumPy数组,里面是我的级数中的数据。...只要它符合你的条件。 这是我们第一次尝试将多个条件从.apply()方法转换为向量化的解决方案。向量化选项将在0.1秒多一点的时间内返回列,.apply()将花费12.5秒。...代码如下: 如果添加了.values: 4 更复杂的 有时必须使用字符串,有条件地从字典中查找内容,比较日期,有时甚至需要比较其他行的值。我们来看看!

    6.8K41

    30 个小例子帮你快速掌握Pandas

    13.通过groupby应用多个聚合函数 agg函数允许在组上应用多个聚合函数。函数列表作为参数传递。 df[['Geography','Gender','Exited']]....重设索引,但原始索引保留为新列。我们可以在重置索引时将其删除。...18.插入新列 我们可以向DataFrame添加新列,如下所示: group = np.random.randint(10, size=6) df_new['Group'] = group df_new...但新列将添加在末尾。如果要将新列放在特定位置,则可以使用插入函数。 df_new.insert(0, 'Group', group) df_new ?...method参数指定如何处理具有相同值的行。first表示根据它们在数组(即列)中的顺序对其进行排名。 21.列中唯一值的数量 使用分类变量时,它很方便。我们可能需要检查唯一类别的数量。

    10.8K10

    Python数据分析实战之技巧总结

    Q4、数据运算存在NaN如何应对 需求:pandas处理多列相减,实际某些元素本身为空值,如何碰到一个单元格元素为空就忽略了不计算,一般怎么解决!...Q5、如何对数据框进行任意行列增、删、改、查操作 df1=df.copy() #复制一下 # 增操作 #普通索引,直接传入行或列 # 在第0行添加新行 df1.loc[0] = ["F","1月",...100,50,30,10,10] # 在第0列处添加新列 df1.insert(0, '建筑编码',[1,2,2,3,4,4,5]) df1.loc[:,"new"] = np.arange(7)...dataframe # pd.concat([df1, df2, df3]) # 往末尾添加多个dataframe # pd.concat([df1, df2, df3], axis = 1) # 往末尾添加多个...库中使用.where()函数 # df5_13=df5.where((df5.月份=="1月")&(df5.动力用电>5)).dropna(axis=0) # 或pandas库中的query()函数 df

    2.4K10

    整理了10个经典的Pandas数据查询案例

    在开始之前,先快速回顾一下Pandas中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...在后端Pandas使用eval()函数对该表达式进行解析和求值,并返回表达式被求值为TRUE的数据子集或记录。所以要过滤Pandas中的DataFrame,需要做的就是在查询函数中指定条件即可。...在多个条件过滤 一个或多个条件下过滤,query()的语法都保持不变 但是需要指定两个或多个条件进行过滤的方式 and:回在满足两个条件的所有记录 or:返回满足任意条件的所有记录 示例2 查询数量为95...那么如何在另一个字符串中写一个字符串?将文本值包装在单个引号“”中,就可以了。...与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。 除此以外, Pandas中的query()方法还可以在查询表达式中使用数学计算。

    3.9K20

    整理了10个经典的Pandas数据查询案例

    在开始之前,先快速回顾一下Pandas中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...在后端Pandas使用eval()函数对该表达式进行解析和求值,并返回表达式被求值为TRUE的数据子集或记录。所以要过滤Pandas中的DataFrame,需要做的就是在查询函数中指定条件即可。...在多个条件过滤 一个或多个条件下过滤,query()的语法都保持不变 但是需要指定两个或多个条件进行过滤的方式 and:回在满足两个条件的所有记录 or:返回满足任意条件的所有记录 示例2 查询数量为95...那么如何在另一个字符串中写一个字符串?将文本值包装在单个引号“”中,就可以了。...与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。 除此以外, Pandas中的query()方法还可以在查询表达式中使用数学计算。

    24120

    10个快速入门Query函数使用的Pandas的查询示例

    在开始之前,先快速回顾一下pandas -中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...在多个条件过滤 一个或多个条件下过滤,query()的语法都保持不变 但是需要指定两个或多个条件进行过滤的方式 and:回在满足两个条件的所有记录 or:返回满足任意条件的所有记录 示例2 查询数量为95...那么如何在另一个字符串中写一个字符串?将文本值包装在单个引号“”中,就可以了。...与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。 除此以外, Pandas Query()还可以在查询表达式中使用数学计算。...日期时间列过滤 使用Query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串

    4.4K20

    10快速入门Query函数使用的Pandas的查询示例

    在开始之前,先快速回顾一下pandas -中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...pandas query()函数可以灵活地根据一个或多个条件提取子集,这些条件被写成表达式并且不需要考虑括号的嵌套 在后端pandas使用eval()函数对该表达式进行解析和求值,并返回表达式被求值为TRUE...那么如何在另一个字符串中写一个字符串?...与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。...除此以外, Pandas Query()还可以在查询表达式中使用数学计算 查询中的简单数学计算 数学操作可以是列中的加,减,乘,除,甚至是列中值或者平方等,如下所示: 示例6 df.query("Shipping_Cost

    4.5K10

    探索Pandas库在Excel数据处理中的应用

    探索Pandas库在Excel数据处理中的应用 在数据分析领域,Pandas库因其强大的数据处理能力而广受欢迎。今天,我们将通过一个简单的示例来探索如何使用Pandas来处理Excel文件。...假设我们有一个名为data.xlsx的文件,我们可以使用以下代码来读取它: import pandas as pd # 读取Excel文件 df = pd.read_excel('data.xlsx'...) 查看Sheet列表 Excel文件可能包含多个Sheet,我们可以使用以下代码来查看所有的Sheet名称: # 查看sheet列表 print(pd.ExcelFile('data.xlsx').sheet_names...(1)) # 修改指定条件行的数据 df.loc[df['age'] > 30, 'name'] = 'Adult' print(df['name']) 新增数据 我们可以向DataFrame中添加新的行或多行数据...在处理Excel数据时的强大功能。

    8200

    懂Excel就能轻松入门pandas(一):筛选功能

    - 还有很多其他参数,我们这次的数据非常规范,因此不需要用到其他参数 按位置过滤 Excel 的筛选只能根据列值进行操作,因此我们在表格添加一序号列。...看图: - 为了与 pandas 行索引保持一致,这里添加的列值是从0开始 接着试试,"显示第3至6行",如下: - 功能卡"数据"页面,在"排序和筛选"中点击大大的"筛选"图标 - 点首行第一列的下角标签...- 默认是全选了,点一下"全选",即可取消所有选中的 - 分别点选对应的值即可 看看 pandas 中如何做到,如下: - pandas 中的 DataFrame 自带行索引 - 直接使用 df.loc...如下: pandas 对应操作如下: - 血型 列是文本类型,因此可以用 .str ,从而使用一系列文本快捷方法 当然,pandas 中的文本处理功能比 Excel 强大得多,来看看。...下期看看 Excel 的高级筛选功能,在 pandas 中是如何实现。

    2.3K30

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    在 Pandas 中,索引可以设置为一个(或多个)唯一值,这就像在工作表中有一列用作行标识符一样。与大多数电子表格不同,这些索引值实际上可用于引用行。...在 Pandas 中,您可以直接对整列进行操作。 pandas 通过在 DataFrame 中指定单个系列来提供矢量化操作。可以以相同的方式分配新列。...If/then逻辑 假设我们想要根据 total_bill 是小于还是大于 10 美元,来创建一个具有低值和高值的列。 在Excel电子表格中,可以使用条件公式进行逻辑比较。...我们将使用 =IF(A2 新存储列中的所有单元格。 使用 numpy 中的 where 方法可以完成 Pandas 中的相同操作。...在 Pandas 中,这个操作一般是通过条件表达式一次对整个列或 DataFrame 完成。

    19.6K20

    一场pandas与SQL的巅峰大战(二)

    hive方面我们新建了一张表,并把同样的数据加载进了表中,后续直接使用即可。 ? ? 开始学习 一、字符串的截取 对于原始数据集中的一列,我们常常要截取其字串作为新的列来使用。...需要从订单时间ts或者orderid中截取。在pandas中,我们可以将列转换为字符串,截取其子串,添加为新的列。...,collect_list 在我们的数据中,一个uid会对应多个订单,目前这多个订单id是分多行显示的。...在pandas中,我们采用的做法是先把原来orderid列转为字符串形式,并在每一个id末尾添加一个逗号作为分割符,然后采用字符串相加的方式,将每个uid对应的字符串类型的订单id拼接到一起。...我没有找到pandas实现这样数组形式比较好的方法,如果你知道,欢迎一起交流.另外,pandas在聚合时,如何去重,也是一个待解决的问题。

    2.3K20

    这几个方法颠覆你对Pandas缓慢的观念!

    ▍pandas数据的循环操作 仍然基于上面的数据,我们想添加一个新的特征,但这个新的特征是基于一些时间条件的,根据时长(小时)而变化,如下: ?...其次,它使用不透明对象范围(0,len(df))循环,然后在应用apply_tariff()之后,它必须将结果附加到用于创建新DataFrame列的列表中。...这个特定的操作就是矢量化操作的一个例子,它是在Pandas中执行的最快方法。 但是如何将条件计算应用为Pandas中的矢量化运算?...一个技巧是根据你的条件选择和分组DataFrame,然后对每个选定的组应用矢量化操作。 在下一个示例中,你将看到如何使用Pandas的.isin()方法选择行,然后在向量化操作中实现上面新特征的添加。...Pandas的 HDFStore 类允许你将DataFrame存储在HDF5文件中,以便可以有效地访问它,同时仍保留列类型和其他元数据。

    2.9K20
    领券