Python 是一种 高级 的、解释型 的、通用 的编程语言。其设计哲学强调代码的可读性,使用显著的缩进。Python 是 动态类型 和 垃圾收集 的。
迭代器是一种可以让我们遍历一个集合中所有元素的代码结构。在Lua语言中,通常使用函数表示迭代器:每一次调用函数时,函数会返回集合中的”下一个“元素。一个典型的例子是io.read,每次调用该函数时它都会返回标准输入中的下一行,在没有读取的行时返回nil。
写程序很重要的一点是选择合理的数据结构,不合适的数据结构在如今高性能计算机盛行的情况下,小数据量体现不出什么来,但是在超大数据的时候, 你所面临的困境将会无穷的放大。 在python里主要的数据结构,也就是内置数据结构,包括了列表,元组,字典以及集合。这四种数据结构分别具有不同的特性,影响着python的方方面面。 列表和元组类似于C的数组,但是不同的是,列表是动态的数组,具有着增删改查的操作,元组是静态的数组,本身是不可变的(除非里面包含了可变的容器类) 。那python为啥还要实现元组呢?按照python之禅所述,Special cases aren't special enough to break the rules...There should be one-- and preferably only one --obvious way to do it. 这是因为元组可以缓存于python的运行环境,在每次使用元组时我们都无需去访问内核分配内存,元组和列表代表着两种不同的方式,元组是一个不会改变事物的多种属性,而 列表是保存多个相对独立的对象的集合。 列表的搜索,如果在已知次序的情况下,使用二分法效率会变得很好,但是如前言所述,在相对独立的对象的数据集合中,有序是比较少见的情况,这意味着对列表的搜索 在python内部结构就只能是遍历。python的内建排序不是如《python源码剖析》所述是快速排序,而是Tim排序,这个排序是google发明的,可以在最好的情况下实现O(n)的复杂度排序 ,在最坏的情况下也有O(log(n))。对于数据的搜索, def b_search(i, haystack): imin, imax = 0, len(haystack) while True: if imin > imax: return -1 mid = (imin + imax) // 2 if haystack[mid] > i: imax = mid elif haystack[mid] < i: imin = mid + 1 else: return mid python的二分搜索实现很简单,因为你不需要再考虑内存溢出以及安全性,这些python已经帮你做好了。还有和二分搜索相似的,就是二叉搜索树。至于如果你不想自己实现 你可以选择bisect模块帮你解决这个问题。 元组因为其的不可改变性,对于列表为了其可变性牺牲的额外的内存以及使用它们进行的额外的计算,元组就内存消耗和速度就快的多了。并且小元组在申请了内存后也就是 不会返还给系统,还留待未来使用,在接下来需要新元组时就不需要向系统申请内存了。 下面看看字典和集合,字典在很多语言内都有实现,也就是映射,属于key-value的一种,在python里集合也是类似字典的结构,只不过没有了value,只有key了。 字典和集合的查询无需遍历,只需要计算散列函数就可获得其值,但这也意味着这两种数据结构会占用更大的内存,而且O(1)的复杂度也取决于散列函数的计算复杂度。 字典插入时,会计算键的散列值,理想的散列函数对应的键应该是就是整数,不会出现任何形式的冲突。计算出散列值后,很重要的一点要计算掩码,来得知value应该存放的 位置。对于冲突的处理,python使用的是开放定址法,会在一个数组里不断‘嗅探’,获得空的内存空间。当然,在字典的内存不够用时,自然会申请空间,这意味着我们需要重新散列值和 掩码。 所以,每种数据结构都有其不同的特性,所以这也意味着选择一个良好的数据数据会使得你的代码效率快上不少。
在本章中,我定义了一个比MyLinearMap更好的Map接口实现,MyBetterMap,并引入哈希,这使得MyBetterMap效率更高。
强烈推介IDEA2020.2破解激活,IntelliJ IDEA 注册码,2020.2 IDEA 激活码
随着网购的兴起,使得很多传统店铺转型做线上生意,电子商务的产生极大便利了我们的生活。
Java中的main()是任何Java程序的入口点。它总是写为public static void main(String [] args)。
哈希表(Hash Table)是一种常用的数据结构,其核心原理是将数据存储在数组中,并使用哈希函数来映射数据的键(Key)到数组中的特定位置,这个位置通常被称为“哈希桶”或“槽位”。哈希表允许快速的数据查找、插入和删除操作,通常在平均情况下,这些操作的时间复杂度为O(1)。以下是哈希表的基本原理:
周末学习kotlin的时候顺便对Map做了总结,特此记录下来 科特林你好世界 映射,也称为?关联数组,是任何编程语言中的核心数据类型。列表和映射可能是最常见的数据类型。因此,熟悉它们是学习一门新语言的
Ruby是强类型静态语言,即Ruby中一旦某一个对象被定义类型,如果不通过强制转换操作,那么它永远就是该数据类型,并且只有在Ruby解释器运行时才会检测对象数据类型,它的一切皆为对象(包括 nil 值对象),可以通过调用内置class属性来获取该对象的具体数据类型。对于 Ruby 而言,所有类型都继承自 Object 类(根类为 BasicObject)。
1.引入集合框架 采用数组存在的一些缺陷: 1.数组长度固定不变,不能很好地适应元素数量动态变化的情况。 2.可通过数组名.length获取数组的长度,却无法直接获取数组中真实存储的个数。 3.在进行频繁插入、删除操作时同样效率低下。 2.Java集合框架包含的内容 Java集合框架为我们提供了一套性能优良、使用方便的接口和类,它们都位于Java.util包中。 集合框架是为表示和操作集合而规定的一种统一的标准体系结构。集合框架都包含三大块内容;对外的接口、接口的实现和对集
在Rust源代码中,rust/library/alloc/src/vec/mod.rs这个文件是Rust标准库中的Vec类型的实现文件。Vec是一个动态大小的数组类型,在内存中以连续的方式存储其元素。
因为种种原因,谷歌把Android的第一开发语言改成了Kotlin。虽然近来用Java编写Android是是非常便利的。但是经过多次更新后,Java在Android方面的用处肯定会比不上Kotlin,所以有必要学习一下Kotlin。
散列表(Hash table,也叫哈希表),是根据键(Key)而直接访问在内存存储位置的数据结构。也就是说,它通过计算一个关于键值的函数,将所需查询的数据映射到表中一个位置来访问记录,这加快了查找速度。这个映射函数称做散列函数,存放记录的数组称做散列表。简单来说,哈希表是一种依赖哈希函数组织数据,以达到常数级别时间复杂度,插入和搜索都非常高效的数据结构。
一般来说读写数据常常涉及的两种数据类型是文本数据与二进制数据(图片、语音),Python中对于这两大类数据的操作主要使用其内置的两种数据类型——字符串与字节数组: 字节数组: 8 比特整数组成的序列,用于存储二进制数据。 字符串: Unicode 字符组成的序列,用于存储文本数据
每个泛型都定义一个原生态类型(raw type), 即不带任何实际类型参数的泛型名称.
Guido van Rossum 认为使用缩进进行分组非常优雅,并且大大提高了普通 Python 程序的清晰度。大多数人在一段时间后就学会并喜欢上这个功能。
https://docs.python.org/zh-cn/3.7/faq/design.html
本文选自 Python 的官方文档。它列举了 27 个设计及历史的问题,其中有些问题我曾经分享过,例如为什么使用显式的 self、浮点数的问题、len(x) 而非 x.len() 等等。大部分的回答很简略精要,适合在空闲之余翻阅。建议你先收藏起来,随时查看,温故知新。
学习《利用python进行数据分析》第三章 IPython:一种交互式计算和开发环境的笔记,共享给大家,同时为自己作为备忘用。 安装ipython用pip即可。ps.博主用的是win7系统,所以接下来
看到豌豆花下猫在 Python 猫公众号推的这篇文章,虽说是从文档里节选的,但是对深入学习Python很有价值,也推荐给大家。
Protobuf是Protocol Buffers的简称,它是Google公司开发的一种数据描述语言,用于描述一种轻便高效的结构化数据存储格式,并于2008年对外开源。Protobuf可以用于结构化数据串行化,或者说序列化。它的设计非常适用于在网络通讯中的数据载体,很适合做数据存储或 RPC 数据交换格式,它序列化出来的数据量少再加上以 K-V 的方式来存储数据,对消息的版本兼容性非常强,可用于通讯协议、数据存储等领域的语言无关、平台无关、可扩展的序列化结构数据格式。开发者可以通过Protobuf附带的工具生成代码并实现将结构化数据序列化的功能。
python使用5种数字类型:布尔型、整型、长整型、浮点型和复数,所有数字类型均为不可变对象。
欢迎阅读跟我学习 Solidity系列中的另一篇文章。在上一篇文章[4],中,我们了解了数据位置的工作方式以及何时可以使用以下三个位置:memory,storage和calldata。
Go 语言的语言符号又称为词法元素,共包括5类:标识符(identifier)、关键字(keyword)、操作符(operator)、分隔符(delimiter)、以及字面量(literal)。一般情况下,空格符、水平制表符、回车符和换行符都会被忽略,除非它们作为多个语言符号之间的分隔符的一部分。在 Go 语言中不需要显示地插入分号,在必要时,Go 语言会自动为代码插入分号以进行语句分隔。
本着这种精神,这是我的python面试/工作准备问题和答案。大多数数据科学家编写了大量代码,因此这对科学家和工程师均适用。
当程序执行过程中RAM中有大量对象处于活动状态时,可能会出现内存问题,特别是在对可用内存总量有限制的情况下。
【编者按】虽已问世9年之久,但是相较MongoDB,Hamsterdb的知名度仍然有所欠缺,更一度被评为非主流数据库。Hamsterdb是个开源的键值类型数据库。但是区别于其他NoSQL,Hamsterdb是单线程和非分布式的,其特性设计也更像是一个列存储数据库,同时还支持read-committed隔离级别的ACID事务。那么对比LevelDB,Hamsterdb又会有什么优势,这里我们走进项目参与者之一Christoph Rupp的分享。 以下为译文: 在这篇文章中,我想向大家介绍Hamsterdb——
Python对象类型 说明:python程序可以分解成模块,语句,表达式以及对象。 1)、程序由模块构成 2)、模块包含语句 3)、语句包含表达式 4)、表达式建立并处理对象 一、使用内置类型 除非有内置类型无法提供的特殊对象需要处理,最好总是使用内置对象而不是使用自己的实现。 二、python的核心数据类型 对象类型 例子 常量/创建 数字 1234,3.1414,999L,3+4j,Decimal 字符串 'diege',"diege's" 列表 [1,[2,'three'],4] 字典 {'food':'spam','taste':'yum'} 元组(序列) (1,‘span',4,'u') 文件 myfile=open('eggs'.'r') 其他类型 集合,类型,None,布尔型 还有模式对象,套接字对象等等。。其他的类型的对象都是通过导入或者使用模块来建立的。 由字符组成的字符串,由任意类型的元素组成的列表。这两种类型的不同之处在于,列表中的元素能够被修改,而字符串中的字符则不能被修改。换句话说,字符串的值是固定的,列表的值是可变的。元组的数据类型,它和列表比较相近,只是它的元素的值是固定的。列表和字典都可以嵌套,可以随需求扩展和删减。并能包含任意类型的对象。 Python中没有类型声明,运行的表达式,决定了建立和使用对象的类型。同等重要的是,一旦创建了一个对象。它就和操作结合绑定了--只可以对字符串进行字符串相关操作。对列表进行相关操作。Python是动态类型(它自动地跟踪你的类型而不是要求声明代码),但是它也是强类型语言(只能对一个对象性有效操作). 三、数字 整数,浮点,长整型等 支持一般的数学运算:+,- * % **(乘方) 5L,当需要有额外的精度时,自动将整型变化提升为长整型。 除表达式,python还有一些常用的数学模块和随机数模块 >>>import math >>> dir(math) >>> math.log(1) 0.0 >>> import random >>> dir(random) 四、字符串 1、是一个个单个字符的字符串的序列。 >>> s[1] 'i 第一个字符的序列是0 >>> s[0] 'd 通过字符找到索引编号 >>> S.index('a') 0 除了简单的从位置进行索引,序列也支持一种所谓分片的操作。 >>> s='diege' >>> s[1:3] 'ie'包括左边的位置不包括右边的位置 >>> s[:3] 'die' 开头到第三个(不包括第3个) >>> s[3:] 'ge' 第三个到最后(包括第3个) >>> s[:] 'diege' 所有 >>> s[-1] 'e' 倒数第1个 2、序列可以通过len()函数获取长度 >>> s='diege' >>> len(s) 5 可以根据序列定位字符串里的字符,序列从0开始 >>> s[0] 'd 可以使用反向索引 >>> s[-1] 'e' >>> s[len(s)-1] 'e'
1.python 常见的数据类型 int string dict list tuple 2.上面常见的数据类型有哪些是可变的,哪些是不可变的,为什么? dict list 是可变的 int string tuple是不可变的 本质 可以作为字典的key,就是不可变的 3.==和is 的区别 is比较的是id 而‘==’比较的是值 4.深浅拷贝的区别 import copy a = [1,['m']] b = a b采用赋值的方式 c = copy.copy(a) c采用浅拷贝 d = copy.dee
一、字典是python中最灵活的内置数据结构类型,如果把列表看作是有序的对象集合,那么字典就是无序的集合,字典和列表的主要差别在于:字典当中的元素是通过键来存取的,而不是通过偏移量存取。python字典的主要属性如下:
Kotlin号称全面兼容Java,于是乎Java的容器类仍可在Kotlin中正常使用,包括大家熟悉的队列ArrayList、映射HashMap等等。不过Kotlin作为一门全新的语言,肯定还是要有自己的容器类,不然哪天Java跟Kotlin划清界限,那麻烦就大了。与Java类似,Kotlin也拥有三类基本的容器,分别是集合Set、队列List、映射Map,然后每类容器又分作只读与可变两种类型,这是为了判断该容器能否进行增删改等变更操作。Kotlin对修改操作很慎重,比如变量用val前缀表示不可修改,用var前缀表示允许修改;类默认是不允许继承的,只有添加open前缀才允许该类被继承;至于容器默认为只读容器,如果需要进行修改则需加上Mutable形成新的容器,比如MutableSet表示可变集合,MutableList表示可变队列,MutableMap表示可变映射。 既然Set/List/Map都属于容器,那么必定拥有相同的基本容器方法,具体说明如下: isEmpty : 判断该容器是否为空。 isNotEmpty : 判断该容器是否非空。 clear : 清空该容器。 contains : 判断该容器是否包含指定元素。 iterator : 获取该容器的迭代器。 count : 获取该容器包含的元素个数,也可通过size属性获得元素数量。 初始化赋值 : Kotlin允许在声明容器变量之时进行初始赋值,这点很方便比Java先进,当然不同容器的初始化方法有所区别,具体的对应关系见下表: 只读集合Set setOf 可变集合 mutableSetOf 只读队列List listOf 可变队列MutableList mutableListOf 只读映射Map mapOf 可变映射MutableMap mutableMapOf 以上是Kotlin容器的基本方法,更具体的增删改查等用法则有所不同,下面分别介绍这三类六种容器的详细用法。
该网站是对Swift官方文档的翻译,但不是无脑翻译,而是结合作者的开发经验,在翻译的基础上,给出一些实用的建议。
程序设计基本元素 常见错误: Python2中默认的编码格式是 ASCII 格式,在没修改编码格式时无法正确打印汉字,所以在读取中文时会报错。 解决方法为只要在文件开头加入 # -- coding: UTF-8 -- 或者 #coding=utf-8 就行了 通过在命令行上提供参数来定制程序行为。如最小批次、周期数、学习率。 1.ImportError:No module name nltk常见错误: 解决办法:上Stack Overflow或github查询相关模块安装方法,在虚拟环境一般用pip 2.SyntaxError:invaild syntax 解决办法:程序中包含错误,查看参数设置或修改语法错误 3.版本冲突:keras会出现版本问题,老的代码需要降低keras版本,tensorflow与cudnn需对应 在python中,所有的数据都表示为对象及对象之间的关系,python对象是特定数据类型的值在内存中的表现方式。每个对象由其标志、类型和值三者标识。 数据类型是一系列值及定义在这些值上的一系列操作,python内置数据类型包括bool、str、int和float 布尔表达式可以用于控制程序的行为 使用数值类型、内置函数、python标准模块、扩展模块中的函数可实现python的超级数学计算器功能,如大数据分析。 python典型结构: 1.一系列import语句 2.一系列函数定义 3.任意数量的全局代码,即程序的主体 针对程序流程控制而言,函数的影响力与选择结构和循环结构一样深远。函数允许程序的控制在不同的代码片段之间切换。函数的意义在于可以在程序中清晰地分离不同的任务,而且还为代码复用提供了一个通用的机制。如果程序中包含多个函数,则可将这些函数分组包含在模块中,将计算任务分解为大小合理的子任务。 借助函数,我们可以实现如下功能: 1.把一长系列的语句分解为独立的部分 2.代码重用,而不需复制代码 3.在更高的概念层面上处理任务 模块化程序设计的优越性: 1.可编写合理规模或超大系统的程序 2.调试可限制在少量的代码范围 3.维护以及改进代码会更容易 递归:函数调用本身。证明技术:数学归纳法
在本系列中,大部分内容都是在阐述特定数组公式如何工作的逻辑,但是假设你有一个大型的数组公式,却不知道它是如何工作的,你该怎么办?你已经学到了许多技术,弄清楚为什么一个公式正在做它该做的事。
Java 集合定义了两种基本的数据结构,一种是 Collection,表示一组对象的集合;另一种是Map,表示对象间的一系列映射或关联关系。Java 集合的基本架构如下图。
Python中的字典在其他语言中有不同的称呼,比如JS中叫做对象,PHP中叫做数组等等,各有各的称呼,但是个人觉得字典这个名称比较合适,字典反映了这种数据类型的特性,表示通过某个值去查找另一个值。python中的字典就是通过一个键查找一个值,在后面的数据库的表对象查找的时候也是使用类似的方法,JSON数据的查找也是类似方法......
如下图1和图2所示,如果使用公式引用一列中的项目,当按F9评估其值时,会看到:在花括号内放置了一组项目,文本被添加上了引号,分号意味着跨行,且项目列使用分号。
简介 数据结构基本上就是--它们是可以处理一些数据的结构。或者说,它们是用来存储一组相关数据的。在Python里面有三种内建的数据结构--列表、元组和字典。 一、列表 list是处理一组有序项目的数据结构,即你可以在一个列表中存储一个序列的项目。假象你有一个购物列表,上面记载着你想买的东西,就容易理解列表了。只不过在你的购物列表上,可能每样东西都独自占有一行,而在Python中,你在每个项目之间用逗号分隔。 列表中的项目应该包含在方括号中,这样Python就知道你在指明一个列表。一旦你创建一个列表,你可以添
一、字典介绍 字典(dictionary)是除列表意外python之中最灵活的内置数据结构类型。列表是有序的对象结合,字典是无序的对象集合。两者之间的区别在于:字典当中的元素是通过键来存取的,而不是通过偏移存取。 1、字典的主要属性 *通过键而不是偏移量来读取 字典有时称为关联数组或者哈希表。它们通过键将一系列值联系起来,这样就可以使用键从字典中取出一项。如果列表一样可以使用索引操作从字典中获取内容。 *任意对象的无序集合 与列表不同,保存在字典中的项并没有特定的顺序。实际上,Python将各项从左到右随机排序,以便快速查找。键提供了字典中项的象征性位置(而非物理性的)。 *可变,异构,任意嵌套 与列表相似,字典可以在原处增长或是缩短(无需生成一份拷贝),可以包含任何类型的对象,支持任意深度的嵌套,可以包含列表和其他字典等。 *属于可变映射类型 通过给索引赋值,字典可以在原处修改。但不支持用于字符串和列表中的序列操作。因为字典是无序集合,根据固定顺序进行操作是行不通的(例如合并和分片操作)。字典是唯一内置的映射类型(键映射到值得对象)。 *对象引用表(哈希表) 如果说列表是支持位置读取对象的引用数组,那么字典就是支持键读取无序对象的引用表。从本质上讲,字典是作为哈希表(支持快速检索的数据结构)来实现的。一开始很小,并根据要求而增长。此外,Python采用最优化的哈希算法来寻找键,因此搜索是很快速的。和列表一样字典存储的是对象引用。 2、常见的字典操作 可以查看库手册或者运行dir(dict)或者help(dict),类型名为dict。当写成常量表达式时,字典以一系列"键:值(key:value)”对形式写出的,用逗号隔开,用大括号括起来。可以和列表和元组嵌套 操作 解释 D1={} 空字典 D={'one':1} 增加数据 D1[key]='class' 增加数据:已经存在就是修改,没有存在就是增加数据 D2={'name':'diege','age':18} 两项目字典 D3={'name':{'first':'diege','last':'wang'},'age':18} 嵌套 D2['name'] 以键进行索引计算 D3['name']['last'] 字典嵌套字典的键索引 D['three'][0] 字典嵌套列表的键索引 D['six'][1] 字典嵌套元组的键索引 D2.has_key('name') 方法:判断字典是否有name键 D2.keys() 方法:键列表 list(D) 获取D这个字典的的KEY的 MS按字典顺序排序成一个列表 D2.values() 方法:值列表 'name' in D2 方法:成员测试:注意使用key来测试 D2.copy() 方法:拷贝 D2.get(key,deault) 方法:默认 如果key存在就返回key的value,如果不存在就设置key的value为default。但是没有改变原对象的数据 D2.update(D1) 方法:合并。D1合并到D2,D1没有变化,D2变化。注意和字符串,列表好的合并操作”+“不同 D2.pop('age') 方法:删除 根据key删除,并返回删除的value len(D2) 方法:求长(存储元素的数目) D1[key]='class' 方法:增加:已经存在的数据就是修改,没有存在就是增加数据 D4=dict(name='diege',age=18) 其他构造技术 D5=dict.fromkeys(['a','b']) 其他构造技术 dict.fromkeys 可以从一个列表读取字典的key 值默认为空,可指定初始值.两个参数一个是KEY列表,一个初始值 >>> D4 {'a': None, 'b': None} >>> D5=dict.fromkeys(['a
在Java中,数组是一种固定大小的数据结构,用于存储具有相同类型的对象。与之相比,集合是更灵活的数据结构,它们可以增长和收缩,并且提供了更多的操作和算法。
散列是指使用称为散列函数的数学公式从可变大小的输入生成固定大小的输出的过程。该技术确定数据结构中项目存储的索引或位置。
翻译自:https://docs.swift.org/swift-book/LanguageGuide/CollectionTypes.html
>>> 交互式终端中默认的 Python 提示符。往往会显示于能以交互方式在解释器里执行的样例代码之前。 ... 交互式终端中输入特殊代码行时默认的 Python 提示符,包括:缩进的代码块,成对的分隔符之内(圆括号、方括号、花括号或三重引号),或是指定一个装饰器之后。 2to3 一个将 Python 2.x 代码转换为 Python 3.x 代码的工具,能够处理大部分通过解析源码并遍历解析树可检测到的不兼容问题。2to3 包含在标准库中,模块名为 lib2to3;并提供一个独立入口点
e.stopPropagation(); // stop 停止 Propagation 传播 下列代码为例,当点击父盒子中的son盒子时,不阻止事件冒泡,会发生弹出三个提示框(son、father和document),阻止事件冒泡后,父亲元素不在冒泡弹出框。只弹出son提示框。
领取专属 10元无门槛券
手把手带您无忧上云