最近工作有点忙,所以文章更新频率低了点,希望大家可以谅解,好了,言归正传,下面进入今天的主题: 如何使用scala+spark读写Hbase 软件版本如下: scala2.11.8 spark2.1.0...关于批量操作Hbase,一般我们都会用MapReduce来操作,这样可以大大加快处理效率,原来也写过MR操作Hbase,过程比较繁琐,最近一直在用scala做spark的相关开发,所以就直接使用scala...+spark来搞定这件事了,当然底层用的还是Hbase的TableOutputFormat和TableOutputFormat这个和MR是一样的,在spark里面把从hbase里面读取的数据集转成rdd...整个流程如下: (1)全量读取hbase表的数据 (2)做一系列的ETL (3)把全量数据再写回hbase 核心代码如下: 从上面的代码可以看出来,使用spark+scala操作hbase是非常简单的。.../spark-hbase-connector https://github.com/hortonworks-spark/shc
我们知道Spark2.0 ,Spark 1.6还有Spark 1.5 三者之间版本是不兼容的,尤其是一些内部API变化比较大。如果你的系统使用了不少底层的API,那么这篇文章或许对你有帮助。...我们介绍的兼容相关一些技巧,主要包括动态编译以及反射等方式,也用到了Scala的一些语言特性。...toInt, f(1).toDouble)) sparse(vectorSize, v) } }) t } 我们根据不同版本,动态加载对应的类,然后通过反射来调用方法...然而通过反射,就无法使用类似的代码了: val t = udf { ..... } 因为 udf 函数要求能够推导出输入和返回值是什么。...我们使用了另外一个Scala语法的技巧,如下: val t = functions2.udf(reslutClzzName, (features: String) => { if (!
同时,Python 语言的入门门槛也显著低于 Scala。 为此,Spark 推出了 PySpark,在 Spark 框架上提供一套 Python 的接口,方便广大数据科学家使用。...2、Python Driver 如何调用 Java 的接口 上面提到,通过 spark-submit 提交 PySpark 作业后,Driver 端首先是运行用户提交的 Python 脚本,然而 Spark...4、Executor 端进程间通信和序列化 对于 Spark 内置的算子,在 Python 中调用 RDD、DataFrame 的接口后,从上文可以看出会通过 JVM 去调用到 Scala 的接口,最后执行和直接使用...而对于需要使用 UDF 的情形,在 Executor 端就需要启动一个 Python worker 子进程,然后执行 UDF 的逻辑。那么 Spark 是怎样判断需要启动子进程的呢?...在 Spark 2.2 后提供了基于 Arrow 的序列化、反序列化的机制(从 3.0 起是默认开启),从 JVM 发送数据到 Python 进程的代码在 sql/core/src/main/scala
Python 中调用 RDD、DataFrame 的接口后,从上文可以看出会通过 JVM 去调用到 Scala 的接口,最后执行和直接使用 Scala 并无区别。...而 对于需要使用 UDF 的情形,在 Executor 端就需要启动一个 Python worker 子进程,然后执行 UDF 的逻辑。那么 Spark 是怎样判断需要启动子进程的呢?...在 PythonEvals(https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql...在 Spark 2.2 后提供了基于 Arrow 的序列化、反序列化的机制(从 3.0 起是默认开启),从 JVM 发送数据到 Python 进程的代码在 sql/core/src/main/scala...对于如何进行序列化、反序列化,是通过 UDF 的类型来区分: eval_type = read_int(infile) if eval_type == PythonEvalType.NON_UDF:
删除在 org.apache.spark.sql 包中的一些类型别名(仅限于 Scala) UDF 注册迁移到 sqlContext.udf 中 (Java & Scala) Python DataTypes...Spark 2.0 中的SparkSession 为 Hive 特性提供了内嵌的支持, 包括使用 HiveQL 编写查询的能力, 访问 Hive UDF,以及从 Hive 表中读取数据的能力.为了使用这些特性...使用反射推断Schema Scala Java Python Spark SQL 的 Scala 接口支持自动转换一个包含 case classes 的 RDD 为 DataFrame.Case...您可以调用 spark.catalog.uncacheTable("tableName") 从内存中删除该表。...DataFrames 仍然可以通过调用 .rdd 方法转换为 RDDS 。 在 Scala 中,有一个从 SchemaRDD 到 DataFrame 类型别名,可以为一些情况提供源代码兼容性。
针对Dataset数据结构来说,可以简单的从如下四个要点记忆与理解: Spark 框架从最初的数据结构RDD、到SparkSQL中针对结构化数据封装的数据结构DataFrame, 最终使用Dataset...函数在SQL和DSL中使用 SparkSQL与Hive一样支持定义函数:UDF和UDAF,尤其是UDF函数在实际项目中使用最为广泛。...方式一:SQL中使用 使用SparkSession中udf方法定义和注册函数,在SQL中使用,使用如下方式定义: 方式二:DSL中使用 使用org.apache.sql.functions.udf函数定义和注册函数...函数功能:将某个列数据,转换为大写 */ // TODO: 在SQL中使用 spark.udf.register( "to_upper_udf", // 函数名 (name:.../ 应用结束,关闭资源 spark.stop() } } 14-[了解]-分布式SQL引擎之spark-sql交互式命令行 回顾一下,如何使用Hive进行数据分析的,提供哪些方式交互分析??
在StreamingPro里其实都有实际的使用例子,但是如果有一篇文章讲述下,我觉得应该能让更多人获得帮助 追本溯源 记得我之前吐槽过Spark MLlib的设计,也是因为一个朋友使用了spark MLlib...//保存模型 nb.write.overwrite().save(path + "/" + modelIndex) 接着,在你的Java/scala程序里,引入spark core,spark mllib...加载模型: val model = NaiveBayesModel.load(tempPath) 这个时候因为要做预测,我们为了性能,不能直接调用model的transform方法,你仔细观察发现,我们需要通过反射调用两个方法...截止到目前我们已经完成了作为一个普通java/scala 方法的调用流程。如果我不想用在应用程序里,而是放到spark 流式计算里呢?...不同的算法因为内部实现不同,我们使用起来也会略微有些区别。
unsplash.com/@genessapana 因为业务需要(项目技术栈为 spark 2+ ),七八月份兴冲冲从学校图书馆借了书,学了 scala + spark ,还写了不少博文,其中有几篇被拿来发推送...、【疑惑】如何从 Spark 的 DataFrame 中取出具体某一行? ... 但实际操作起来,还是遇到不少问题。...spark 中,新建一列使用的函数是 withColumn ,首先传入函数名,接下来传入一个 col 对象。...首先,如果我想使用列 x ,我不可以直接 "x" ,因为这是一个字符串,我需要调用隐式转换的函数 值得注意的是, spark 是你的 SparkSession 实例。...看起来,似乎 python 下的操作更加简洁优雅,但我更喜欢用 scala 书写这种级别的项目。 原因很简单, scala 对于类型的严格要求已经其从函数式编程那里借鉴来的思想,让代码写得太爽了。
中的其他 UDF 支持,Spark SQL 支持集成现有 Hive 中的 UDF,UDAF 和 UDTF 的(Java或Scala)实现。...只能使用 Apache Spark 的 SQL 查询语言来调用 - 换句话说,它们不能与 Dataframe API 的领域特定语言(domain-specific-language, DSL)一起使用...另外,通过包含实现 jar 文件(在 spark-submit 中使用 -jars 选项)的方式 PySpark 可以调用 Scala 或 Java 编写的 UDF(through the SparkContext...下面的示例演示了如何使用先前 Scala 中定义的 SUMPRODUCT UDAF: # Scala UDAF definition object ScalaUDAFFromPythonExample...流数据如何存储 作为流数据接收器调用 Receiver.store 方式进行数据存储,该方法有多个重载方法,如果数据量很小,则攒多条数据成数据块再进行块存储,如果数据量大,则直接进行块存储。 79.
在 Byzer 中使用 Scala/Java 编写 UDF, 随写随用,无需编译打包发布重启 内置 UDF....使用 Scala/Java 编写 UDF,然后发布成 Jar, 引入 Jar 包后,需要重启 使用基于 Hive 开发的 UDF 动态 UDF 动态 UDF的使用最简单,用户可以使用 Byzer 的 register...运行结果如下: 在上面的示例中,如果用户使用 Scala 编写,那么 udfType 支持 udf/udaf 。...如果想具体的业务逻辑使用 Java 开发,那么需要单独再写一个 Java 类,在里面实现具体的逻辑,然后在 Scala 函数中调用。...参看 streaming.core.compositor.spark.udf.Functions 如何把 Jar 包放到正确的目录里很重要,对于不同的 Byzer 发行版,目录可能有差异。
用Scala编写的UDF与普通的Scala函数没有任何区别,唯一需要多执行的一个步骤是要让SQLContext注册它。...当然,我们也可以在使用UDF时,传入常量而非表的列名。...此时,UDF的定义也不相同,不能直接定义Scala函数,而是要用定义在org.apache.spark.sql.functions中的udf方法来接收一个函数。...,除了需要对UDAF进行实例化之外,与普通的UDF使用没有任何区别。...通过Spark提供的UDF与UDAF,你可以慢慢实现属于自己行业的函数库,让Spark SQL变得越来越强大,对于使用者而言,却能变得越来越简单。
从Spark数据源进行创建 查看Spark数据源进行创建的文件格式 scala> spark.read. csv format jdbc json load option options...通过反射确定(需要用到样例类) 创建一个样例类 scala> case class People(name:String, age:Int) 根据样例类将RDD转换为DataFrame scala>...|Michael| | 30| Andy| | 19| Justin| +----+-------+ 注册UDF,功能为在数据前添加字符串 scala> spark.udf.register(...UDF scala> spark.sql("Select addName(name), age from people").show() +-----------------+----+ |UDF:addName...在这里插入图片描述 强类型实现 强类型无法使用SQL形式查询调用函数,只能用DSL风格。
========== 应用 UDF 函数(用户自定义函数) ========== 1、通过 spark.udf.register(funcName, func) 来注册一个 UDF 函数,name 是...UDF 调用时的标识符,即函数名,fun 是一个函数,用于处理字段。... = [age: bigint, name: string] scala> df.show() scala> spark.udf.register("addName", (x: String) =>...>,StringType,Some(List(StringType))) scala> df.createOrReplaceTempView("people") scala> spark.sql("...(2)你需要通过 spark.udf.resigter 去注册你的 UDAF 函数。
自定义 UDF 函数 在Shell窗口中可以通过spark.udf功能用户可以自定义函数。...| | 30| Andy| | 19| Justin| +----+-------+ // 注册一个 udf 函数: toUpper是函数名, 第二个参数是函数的具体实现 scala> spark.udf.register...buwenbuhuo.blog.csdn.net/ * */ object UDAFDemo { def main(args: Array[String]): Unit = { // 在sql中,聚合函数如何使用...buwenbuhuo.blog.csdn.net/ * */ object UDAFDemo1 { def main(args: Array[String]): Unit = { // 在sql中,聚合函数如何使用...sum.toDouble / count } object UDAFDemo3 { def main(args: Array[String]): Unit = { // 在sql中,聚合函数如何使用
这个底层的探索:只要避免Python UDF,PySpark 程序将大约与基于 Scala 的 Spark 程序一样快。如果无法避免 UDF,至少应该尝试使它们尽可能高效。...3.complex type 如果只是在Spark数据帧中使用简单的数据类型,一切都工作得很好,甚至如果激活了Arrow,一切都会非常快,但如何涉及复杂的数据类型,如MAP,ARRAY和STRUCT。...为了摆脱这种困境,本文将演示如何在没有太多麻烦的情况下绕过Arrow当前的限制。先看看pandas_udf提供了哪些特性,以及如何使用它。...这意味着在UDF中将这些列转换为JSON,返回Pandas数据帧,并最终将Spark数据帧中的相应列从JSON转换为复杂类型 [2enpwvagkq.png] 5.实现 将实现分为三种不同的功能: 1)...如前所述,必须首先使用参数 cols_in 和 cols_out 调用它,而不是仅仅传递 normalize。
在比如想测试下程序的性能,这时候如果自己写,那就太麻烦了,可以使用spark提供的Time函数。这就是知识全面的一个好处。...udf函数 public UDFRegistration udf() collection 函数,用于用户自定义函数 例子: Scala版本: [Scala] 纯文本查看 复制代码 ?...或则可以通过调用 Encoders上的静态方法来显式创建。 例子: [Scala] 纯文本查看 复制代码 ?...这个方法需要encoder (将T类型的JVM对象转换为内部Spark SQL表示形式), 或则可以通过调用 Encoders上的静态方法来显式创建。...public Dataset range(long start, long end, long step) 使用名为id的单个LongType列创建一个Dataset,包含元素的范围从start
DataSet是自Spark1.6开始提供的一个分布式数据集,具有RDD的特性比如强类型、可以使用强大的lambda表达式,并且使用Spark SQL的优化执行引擎。...DataSet API支持Scala和Java语言,不支持Python。...DataFrame API支持Scala、Java、Python、R。...().getOrCreate() UDF、UDAF、Aggregator UDF UDF是最基础的用户自定义函数,以自定义一个求字符串长度的udf为例: val udf_str_length = udf...{(str:String) => str.length} spark.udf.register("str_length",udf_str_length) val ds =sparkSession.read.json
一、UDF的使用 1、Spark SQL自定义函数就是可以通过scala写一个类,然后在SparkSession上注册一个函数并对应这个类,然后在SQL语句中就可以使用该函数了,首先定义UDF函数,那么创建一个...SqlUdf类,并且继承UDF1或UDF2等等,UDF后边的数字表示了当调用函数时会传入进来有几个参数,最后一个R则表示返回的数据类型,如下图所示: 2、这里选择继承UDF2,如下代码所示: package...类中,想如何操作都可以了,完整代码如下; package com.udf import org.apache.spark.SparkConf import org.apache.spark.sql....buffer(0)=0.0 buffer.update(1,0) //或使用buffer(1)=0 } /** * 当有一行数据进来时就会调用update一次,有多少行就会调用多少次...,input就表示在调用自定义函数中有多少个参数,最终会将 * 这些参数生成一个Row对象,在使用时可以通过input.getString或inpu.getLong等方式获得对应的值 * 缓冲中的变量
领取专属 10元无门槛券
手把手带您无忧上云