首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何从pandas数据框中的多个datetime列中有条件地选择第一个非空日期?

要从pandas数据框中的多个datetime列中有条件地选择第一个非空日期,可以使用以下方法:

  1. 首先,使用pandas的isnull()函数检查每个datetime列中的缺失值。这将返回一个布尔值的数据框,其中缺失值为True,非缺失值为False。
  2. 然后,使用pandas的apply()函数和lambda表达式,将每一行的datetime列传递给一个自定义函数。在这个函数中,使用pandas的first_valid_index()函数找到第一个非空日期的索引。
  3. 最后,使用pandas的apply()函数和lambda表达式,将每一行的datetime列和第一个非空日期的索引传递给另一个自定义函数。在这个函数中,使用pandas的iloc[]函数选择第一个非空日期,并将其返回。

下面是一个示例代码:

代码语言:txt
复制
import pandas as pd

# 创建示例数据框
data = {'date1': [pd.NaT, pd.Timestamp('2022-01-01'), pd.NaT],
        'date2': [pd.Timestamp('2022-02-01'), pd.NaT, pd.Timestamp('2022-02-02')],
        'date3': [pd.Timestamp('2022-03-01'), pd.Timestamp('2022-03-02'), pd.NaT]}
df = pd.DataFrame(data)

# 自定义函数:选择第一个非空日期
def select_first_nonempty_date(row):
    first_nonempty_date = row[row.first_valid_index()]
    return first_nonempty_date

# 从多个datetime列中选择第一个非空日期
df['first_nonempty_date'] = df.apply(lambda row: select_first_nonempty_date(row), axis=1)

print(df['first_nonempty_date'])

这将输出一个新的列first_nonempty_date,其中包含每一行中第一个非空日期的值。

请注意,以上代码中没有提及任何特定的云计算品牌商。如果需要使用腾讯云相关产品来处理数据框,可以根据具体需求选择适当的腾讯云产品,例如腾讯云数据库、腾讯云函数计算等。具体产品选择和介绍可以参考腾讯云官方文档。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

初学者使用Pandas的特征工程

使用pandas Dataframe,可以轻松添加/删除列,切片,建立索引以及处理空值。 现在,我们已经了解了pandas的基本功能,我们将专注于专门用于特征工程的pandas。 !...用于文本提取的apply() pandas的apply() 函数允许在pandas系列上传递函数并将其传递到变量的每个点。 它接受一个函数作为参数,然后将其应用于数据框的行或列。...我们可以将任何函数传递给apply函数的参数,但是我主要使用lambda函数, 这有助于我在单个语句中编写循环和条件。 使用apply和lambda函数,我们可以从列中存在的唯一文本中提取重复凭证。...在我们的大卖场销售数据中,我们有一个Item_Identifier列,它是每个产品的唯一产品ID。此变量的前两个字母具有三种不同的类型,即DR,FD和NC,分别代表饮料,食品和非消耗品。...从第一行,我们可以理解,如果Item_Identifier为FD22,Item_Type为Snack Foods,则平均销售额将为3232.54。 这就是我们如何创建多个列的方式。

4.9K31

利用query()与eval()优化pandas代码

本文就将带大家学习如何在pandas中化繁为简,利用query()和eval()来实现高效简洁的数据查询与运算。...: 「常规index」 对于只具有单列Index的数据框,直接在表达式中使用index: # 找出索引列中包含king的记录,忽略大小写 netflix.set_index('title').query...的names为空的情况,按照顺序,用ilevel_n表示MultiIndex中的第n列index: # 构造含有MultiIndex的数据框,并重置index的names为None temp = netflix.set_index...而pandas中的eval()有两种,一种是top-level级别的eval()函数,而另一种是针对数据框的DataFrame.eval(),我们接下来要介绍的是后者,其与query()有很多相同之处,...同样从实际例子出发,同样针对「netflix」数据,我们按照一定的计算方法为其新增两列数据,对基于assign()的方式和基于eval()的方式进行比较,其中最后一列是False是因为日期转换使用coerce

1.5K30
  • (数据科学学习手札92)利用query()与eval()优化pandas代码

    本文就将带大家学习如何在pandas中化繁为简,利用query()和eval()来实现高效简洁的数据查询与运算。 ?...Index的数据框,直接在表达式中使用index: # 找出索引列中包含king的记录,忽略大小写 netflix.set_index('title').query("index.str.contains...中的第n列index: # 构造含有MultiIndex的数据框,并重置index的names为None temp = netflix.set_index(['title', 'type']);temp.index.names...同样从实际例子出发,同样针对netflix数据,我们按照一定的计算方法为其新增两列数据,对基于assign()的方式和基于eval()的方式进行比较,其中最后一列是False是因为日期转换使用coerce...图13   虽然assign()已经算是pandas中简化代码的很好用的API了,但面对eval(),还是逊色不少 DataFrame.eval()通过传入多行表达式,每行作为独立的赋值语句,其中对应前面数据框中数据字段可以像

    1.7K20

    给数据科学家的10个提示和技巧Vol.3

    该博客由一群数据科学家所运营,专注于讲解在各种领域如何使用大数据技术(从机器学习和人工智能到业务领域)。 1 引言 前面已经介绍了一些数据分析的技巧,主要是用Python和R实现。...,对每一列设置相应的条件进行选择,例如id[gender=="m"]就是在id列中找出male的数据并形成一个子集: > df%>%summarise(male_cnt=length(id[gender...3.2 利用applymap改变多个列的值 通过一个示例演示如何使用applymap()函数更改pandas数据框中的多个列值。...CSV文件到数据框中 当一个特定的文件夹中有多个CSV文件,此时我们想将它们存储到一个pandas数据框中。...假设CSV文件位于My_Folder下: import os import pandas as pd # 创建一个空的数据框 df = pd.DataFrame() # 遍历 My_Folder中的所有文件

    78140

    Pandas数据应用:库存管理

    Pandas作为Python中强大的数据分析工具,在处理库存管理相关问题时具有极大的优势。本文将由浅入深地介绍Pandas在库存管理中的常见问题、常见报错及如何避免或解决,并通过代码案例进行解释。...二、常见问题(一)数据读取与存储数据来源多样在库存管理中,数据可能来自不同的渠道,如Excel表格、CSV文件、数据库等。对于初学者来说,可能会遇到不知道如何选择合适的数据读取方式的问题。...这会影响后续的数据分析和处理。可以使用pd.to_datetime()函数转换日期格式,pd.to_numeric()函数转换数值格式。...例如:# 假设有一列名为'date'的日期数据,格式不统一df['date'] = pd.to_datetime(df['date'])# 假设有一列名为'price'的价格数据,存在非数值字符df['...在库存管理中的应用非常广泛,从数据读取到数据清洗,再到数据查询与筛选等各个环节都发挥着重要作用。

    12310

    10个快速入门Query函数使用的Pandas的查询示例

    pandas query()函数可以灵活地根据一个或多个条件提取子集,这些条件被写成表达式并且不需要考虑括号的嵌套。...其实这里的条件不一定必须是相等运算符,可以从==,!=,>,选择,例如: df.query("Quantity != 95") 文本列过滤 对于文本列过滤时,条件是列名与字符串进行比较。...与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。 除此以外, Pandas Query()还可以在查询表达式中使用数学计算。...日期时间列过滤 使用Query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串...但是一定要小心使用intplace = true,因为它会覆盖原始的数据。 总结 我希望在阅读本文后,您可以更频繁,流利地使用Pandas Query()函数,因为Query可以方便以过滤数据集。

    4.4K20

    整理了10个经典的Pandas数据查询案例

    Pandas的query()函数可以灵活地根据一个或多个条件提取子集,这些条件被写成表达式并且不需要考虑括号的嵌套。...其实这里的条件不一定必须是相等运算符,可以从==,!=,>,选择,例如: df.query("Quantity != 95") 文本过滤 对于文本列过滤时,条件是列名与字符串进行比较。...与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。 除此以外, Pandas中的query()方法还可以在查询表达式中使用数学计算。...日期时间列过滤 使用query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串...但是一定要小心使用inplace=true,因为它会覆盖原始的数据。 总结 我希望在阅读本文后,您可以更频繁,流利地使用Pandas中的query()函数,因为它可以方便以过滤数据集。

    24120

    10快速入门Query函数使用的Pandas的查询示例

    pandas query()函数可以灵活地根据一个或多个条件提取子集,这些条件被写成表达式并且不需要考虑括号的嵌套 在后端pandas使用eval()函数对该表达式进行解析和求值,并返回表达式被求值为TRUE...其实这里的条件不一定必须是相等运算符,可以从==,!=,>,选择,例如 df.query("Quantity != 95") 文本列过滤 对于文本列过滤时,条件是列名与字符串进行比较。...与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。...日期时间列过滤 使用Query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串...但是一定要小心使用intplace = true,因为它会覆盖原始的数据。 总结 我希望在阅读本文后,您可以更频繁,流利地使用Pandas Query()函数,因为Query可以方便以过滤数据集。

    4.5K10

    Pandas库

    总结来说,Series和DataFrame各有优势,在选择使用哪种数据结构时应根据具体的数据操作需求来决定。如果任务集中在单一列的高效操作上,Series会是更好的选择。...如何在Pandas中实现高效的数据清洗和预处理? 在Pandas中实现高效的数据清洗和预处理,可以通过以下步骤和方法来完成: 处理空值: 使用dropna()函数删除含有缺失值的行或列。...Pandas提供了强大的日期时间处理功能,可以方便地从日期列中提取这些特征。...Pandas的groupby方法可以高效地完成这一任务。 在Pandas中,如何使用聚合函数进行复杂数据分析? 在Pandas中,使用聚合函数进行复杂数据分析是一种常见且有效的方法。...它不仅支持浮点与非浮点数据里的缺失数据表示为NaN,还允许插入或删除DataFrame等多维对象的列。

    8410

    整理了10个经典的Pandas数据查询案例

    Pandas的query()函数可以灵活地根据一个或多个条件提取子集,这些条件被写成表达式并且不需要考虑括号的嵌套。...其实这里的条件不一定必须是相等运算符,可以从==,!=,>,选择,例如: df.query("Quantity != 95") 文本过滤 对于文本列过滤时,条件是列名与字符串进行比较。...与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。 除此以外, Pandas中的query()方法还可以在查询表达式中使用数学计算。...日期时间列过滤 使用query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串...但是一定要小心使用inplace=true,因为它会覆盖原始的数据。 总结 我希望在阅读本文后,您可以更频繁,流利地使用Pandas中的query()函数,因为它可以方便以过滤数据集。

    3.9K20

    Python报表自动化

    import pandas as pd from datetime import datetime # 因为后面需要处理到日期筛选,所以需要将datetime类从datetime模块中加载进来 data...这里我们通过判断日期是否为2019年(大于2018-12-31)返回TRUE/FALSE进行选择判断。这种利用判断条件来选择数据的方式叫布尔索引。...data=data[data["合同生效日"]>datetime(2018,12,31)] data.shape #经过对日期的过滤,输出了1673行,9列 --- (1673, 9) 对日期列进行观察...从以下运行结果来看,data4数据表格共5019行,贷款金额及贷款用途都含有5019行非空值,说明者两列都没有空值出现。而单位及分成比例只有2041行数据为非空。其他行为空值。...从以下输出结果可知存在空值的记录已经被删除。

    4.1K41

    Pandas 2.2 中文官方教程和指南(十·二)

    它旨在使数据框的读写高效,并使数据在数据分析语言之间的共享变得容易。Parquet 可以使用各种压缩技术来尽可能地缩小文件大小,同时保持良好的读取性能。...+ 目前,将数据框转换为 ORC 文件时,日期时间列中的时区信息不会被保留。...对于其他驱动程序,请注意 pandas 从查询输出中推断列 dtype,而不是通过查找物理数据库模式中的数据类型。例如,假设userid是表中的整数列。...,如果要将多个文本列解析为单个日期列,则会在数据前添加一个新列。...如果尝试解析日期字符串列,pandas 将尝试从第一个非 NaN 元素猜测格式,然后使用该格式解析列的其余部分。

    35100

    没错,这篇文章教你妙用Pandas轻松处理大规模数据

    在这篇文章中,我们将介绍 Pandas 的内存使用情况,以及如何通过为数据框(dataframe)中的列(column)选择适当的数据类型,将数据框的内存占用量减少近 90%。...对象列(object columns)主要用于存储字符串,包含混合数据类型。为了更好地了解怎样减少内存的使用量,让我们看看 Pandas 是如何将数据存储在内存中的。...数据框的内部表示 在底层,Pandas 按照数据类型将列分成不同的块(blocks)。这是 Pandas 如何存储数据框前十二列的预览。 你会注意到这些数据块不会保留对列名的引用。...回到我们的类型表,里面有一个日期(datetime)类型可以用来表示数据集的第一列。 你可能记得这一列之前是作为整数型读取的,而且已经被优化为 uint32。...在读取数据时选择类型‍‍‍‍‍‍ 到目前为止,我们已经‍探索了减少现有数‍据框内存占用的方法。首先,读入阅读数据框,然后再反复迭代节省内存的方法,这让我们可以更好地了解每次优化可以节省的内存空间。

    3.7K40

    Pandas库常用方法、函数集合

    ,适合将数值进行分类 qcut:和cut作用一样,不过它是将数值等间距分割 crosstab:创建交叉表,用于计算两个或多个因子之间的频率 join:通过索引合并两个dataframe stack: 将数据框的列...“堆叠”为一个层次化的Series unstack: 将层次化的Series转换回数据框形式 append: 将一行或多行数据追加到数据框的末尾 分组 聚合 转换 过滤 groupby:按照指定的列或多个列对数据进行分组...: 替换字符串中的特定字符 astype: 将一列的数据类型转换为指定类型 sort_values: 对数据框按照指定列进行排序 rename: 对列或行进行重命名 drop: 删除指定的列或行 数据可视化...:绘制散点矩阵图 pandas.plotting.table:绘制表格形式可视化图 日期时间 to_datetime: 将输入转换为Datetime类型 date_range: 生成日期范围 to_timedelta...用于访问Datetime中的属性 day_name, month_name: 获取日期的星期几和月份的名称 total_seconds: 计算时间间隔的总秒数 rolling: 用于滚动窗口的操作 expanding

    31510

    独家 | Bamboolib:你所见过的最有用的Python库之一(附链接)

    是的,整个项目都是这样的。 数据准备 将字符串更改为datetime 您加载了数据,并意识到日期列是一个字符串。...删除列 如果您意识到不需要列,只需在search转换框中搜索下拉,选择下拉,选择想要下拉的列,然后单击执行。 重命名列 现在您需要重命名列,这是再容易不过的了。...只需搜索extract datatime属性,选择日期列,并选择要提取的内容。 有多个选项供您选择。...幸运的是,Bamboolib可以通过非常直观和简单的方式制作群组。在Search转换框中搜索分组by,选择要分组的列,然后选择要查看的计算。 在这个例子中,我希望看到每个平台上的游戏数量和平均分数。...它还创建了图表,以便您能够理解数据分布。如果数据集中有DateTime数据类型,它还可以创建图表,显示数据在一段时间内如何更改。

    2.2K20

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    在 Pandas 中,索引可以设置为一个(或多个)唯一值,这就像在工作表中有一列用作行标识符一样。与大多数电子表格不同,这些索引值实际上可用于引用行。...(url) tips 结果如下: 与 Excel 的文本导入向导一样,read_csv 可以采用多个参数来指定应如何解析数据。...在 Pandas 中,您使用特殊方法从/向 Excel 文件读取和写入。 让我们首先基于上面示例中的数据框,创建一个新的 Excel 文件。 tips.to_excel("....列的选择 在Excel电子表格中,您可以通过以下方式选择所需的列: 隐藏列; 删除列; 引用从一个工作表到另一个工作表的范围; 由于Excel电子表格列通常在标题行中命名,因此重命名列只需更改第一个单元格中的文本即可...查找和替换 Excel 查找对话框将您带到匹配的单元格。在 Pandas 中,这个操作一般是通过条件表达式一次对整个列或 DataFrame 完成。

    19.6K20

    超强Python『向量化』数据处理提速攻略

    其中,你的选择可以是标量,也可以是数组。只要它符合你的条件。 这是我们第一次尝试将多个条件从.apply()方法转换为向量化的解决方案。...代码如下: 如果添加了.values: 4 更复杂的 有时必须使用字符串,有条件地从字典中查找内容,比较日期,有时甚至需要比较其他行的值。我们来看看!...你可以使用.map()在向量化方法中执行相同的操作。 3、日期 有时你可能需要做一些日期计算(确保你的列已经转换为datetime对象)。这是一个计算周数的函数。...以天为单位的两个日期之差除以7得到过去的周数。下面是使用.apply()的方法。 有两种向量化方法。第一种方法是使用pandas .dt series datetime访问器。...Dask是在Pandas API中工作的一个不错的选择。能够跨集群扩展到TB级的数据,或者甚至能够更有效地在一台机器上处理多核数据。 6 总结 向量化可以极大地加快速度!

    6.8K41

    Pandas高级数据处理:交互式数据探索

    本文将从基础到高级,逐步介绍在 Pandas 中进行交互式数据探索时常见的问题、报错及如何避免或解决这些问题。1....可以使用 df.info() 查看数据的基本信息,包括列名、数据类型和非空值数量;使用 df.describe() 获取数值型数据的统计信息;使用 df.isnull().sum() 检查缺失值。...常见问题:数据类型不一致:某些列可能被错误地识别为对象类型(object),而实际上应该是数值型或日期型。可以通过 pd.to_numeric() 或 pd.to_datetime() 进行转换。...常见问题:重复行未被检测到:有时数据中的某些列是唯一的,但其他列存在重复。可以通过指定 subset 参数来选择特定列进行去重。去重后索引混乱:删除重复行后,索引可能会变得混乱。...常见问题:分组结果为空:如果分组键中存在缺失值,可能会导致分组结果为空。可以通过 dropna=False 参数保留包含缺失值的分组。

    11310

    Pandas_Study02

    pandas 数据清洗 1. 去除 NaN 值 在Pandas的各类数据Series和DataFrame里字段值为NaN的为缺失数据,不代表0而是说没有赋值数据,类似于python中的None值。...,thresh 指示这一列或行中有两个或以上的非NaN 值的行或列被保留 通过布尔判断,也是可以实现删除 NaN 的功能。...,会从最近的那个非NaN值开始将之后的位置全部填充,填充的数值为列上保留数据的最大值最小值之间的浮点数值。...1. datetime 模块 Python的datetime标准模块下的 date子类可以创建日期时间序列的数据 time子类可创建小时分时间数据 datetime子类则可以描述日期小时分数据 import...模块给出时间间隔(差) 借助timedelta 可以定义时间时间间隔 # 设置一个日期 cur0 = datetime.datetime(2018,12,30, 15,30,59) # 获取 从 cur0

    20510
    领券