线性代数模块(scipy.linalg):利用scipy.linalg可以计算行列式det()、求解线性方程组linalg.solve()、求特征值-特征向量linalg.eig()、奇异值分解linalg.svd...统计模块(scipy.stats):scipy.stats包含了大量统计以及概率分析工具。...f(x),并希望求得其最小值,首先在Python中定义该函数,并借助借助NumPy中的三角函数可以实现函数的定义,并绘制函数图像: f(x)=x^4/100+20sin(x) 公式实现代码: def...首先定义拟合函数图形以及误差函数,用于拟合的函数图形定义为下式,其中a、K、b为参数,整个拟合过程代码如下: f(x)=asin(2K*π+b) #定义拟合函数图形 def func(x,m):...# 显示图例和图形 plt.legend() plt.show() 依据生成的样本点,用上式定义的函数图像进行拟合,可以得到拟合函数曲线的三个参数对应的值:a= 20.07,K= 0.499,b= 0.786
,默认为True cbar:bool型变量,用于控制是否在绘制二维核密度估计图时在图像右侧边添加比色卡 color:字符型变量,用于控制核密度曲线色彩,同plt.plot()中的color参数,如'r'...) 加上红色填充颜色,并禁止图例显示: ax = sns.kdeplot(iris.petal_width,shade=True,color='r') 修改为核密度分布: ax = sns.kdeplot...默认为True rug:bool型变量,控制是否绘制对应rugplot的部分,默认为False fit:传入scipy.stats中的分布类型,用于在观察变量上抽取相关统计特征来强行拟合指定的分布,下文的例子中会有具体说明...fit部分拟合出的曲线之外的所有对象的色彩 vertical:bool型,控制是否颠倒x-y轴,默认为False,即不颠倒 norm_hist:bool型变量,用于控制直方图高度代表的意义,为True直方图高度表示对应的密度...rug=True, bins=20) 在上图的基础上强行拟合卡方分布并利用参数字典设置fit曲线为绿色: from scipy.stats import chi2
如'r'代表红色 cmap:字符型变量,用于控制核密度区域的递进色彩方案,同plt.plot()中的cmap参数,如'Blues'代表蓝色系 n_levels:int型,在而为变量时有效,用于控制核密度估计的区间个数...加上红色填充颜色,并禁止图例显示: ax = sns.kdeplot(iris.petal_width,shade=True,color='r') ? ... fit:传入scipy.stats中的分布类型,用于在观察变量上抽取相关统计特征来强行拟合指定的分布,下文的例子中会有具体说明,默认为None,即不进行拟合 hist_kws,kde_kws,...在上图的基础上强行拟合卡方分布并利用参数字典设置fit曲线为绿色: from scipy.stats import chi2 ax = sns.distplot(iris.petal_length...修改norm_hist参数为False使得纵轴显示的不再是密度而是频数(注意这里必须关闭kde和fit绘图的部分,否则纵轴依然显示密度),利用hist_kws传入字典调整直方图部分色彩和透明度,利用rug_kws
软件环境:MATLAB2013a 一、多项式拟合 多项式拟合是利用多项式最佳地拟合观测数据,使得在观测数据点处的误差平方和最小。...如果Show equations复选框被选中,那么图形窗口会显示拟合方程;如果Plot residuals复选框被选中,那么拟合效果将显示误差余量。...此外,还可以选择不同的显示类型,如Bar Plot(直方图)、Scatter Plot(散点图)、Line Plot(线图)。...通过该界面右侧的面板,我们可以得到任意点处拟合函数的值,如在编辑框中输入 2000:10:2080,并单击Evaluate按钮,计算结果将显示在列表框中。...如果Plot evaluated result复选框被选中,那么计算结果将显示在拟合曲线中。 ?
很显然,这是一个分类问题,即根据写入字母的特征信息(如字母的宽度、高度、边际等)去判断其属于哪一种字母。...,发现最佳的惩罚系数C为0.1,模型在训练数据集上的平均准确率只有69.2%,同时,其在测试数据集的预测准确率也不足72%,说明线性可分SVM模型并不太适合该数据集的拟合和预测。...scipy.stats import norm # 绘制森林烧毁面积的直方图 sns.distplot(forestfires.area, bins = 50, kde = True, fit =...) # 计算模型的MSE metrics.mean_squared_error(y_test,pred_svr) out: 1.9258635953335212 # 使用网格搜索法,选择SVM回归中的最佳...为了实现模型之间拟合效果的对比,构建了一个不做任何参数调整的SVM回归模型,并计算得到该模型在测试数据集上的MSE值为1.926,相比于经过调参之后的模型来说,这个值要高于1.746。
as plt plt.style.use('seaborn-white') data = np.random.randn(1000) plt.hist(data); hist()函数有很多调整计算和显示的选项...=True, bins=40) plt.hist(x1, **kwargs) plt.hist(x2, **kwargs) plt.hist(x3, **kwargs); 如果你想简单地计算直方图(...也就是说,计算给定桶中的点数)而不显示它,那么np.histogram()函数是可用的: counts, bin_edges = np.histogram(data, bins=5) print(counts...以下是在此数据上使用 KDE 的快速示例: from scipy.stats import gaussian_kde # 拟合大小为 [Ndim, Nsamples] 的数组 data = np.vstack...有关选择合适的平滑长度的文献非常多:gaussian_kde使用经验法则,试图为输入数据找到近似最佳的平滑长度。
让我们画出Iris 数据变量的直方图。 X.hist(figsize=(10,10)) ? 上面的直方图显示变量0和1接近于高斯分布(1似乎是最接近的)。而3和4看起来完全不是高斯的。...需要注意的是,直方图可能会产生误导(具体可参考我们以前的文章)。 方法二:密度图(KDE图) 密度图是绘制变量分布的另一种方法。它们与直方图类似,但与直方图相比,它们能更清楚地显示变量的分布情况。...现在我可以看到变量0和1比在直方图中显示的更高斯化。变量2和3看起来也有点接近高斯分布,除了两个峰值。 方法三:Q-Q图 Q-Q图根据指定的分布绘制数据。在这种情况下,指定的分布将是“norm”。...而变量2和3在一些地方远离红线,这使它们远离了高斯分布。Q-Q图比直方图和密度图更可靠。...首先,我们将对随机生成的正态分布进行测试。
3、直方图 直方图中,条形的长为对应组的频数与组距的比 直方图能够清楚显示各组频数分布情况 易于显示各组之间频数的差别 1、使用distplot()函数绘制直方图 distplot()结合了...3、使用直方图和最大似然高斯分布拟合展示变量分布 kde用于指定是否在图上添加高斯核密度估计 kde=False from scipy.stats import norm sns.distplot...2、设置color参数,在核密度曲线下方区域进行颜色填充 sns.kdeplot(tips["total_bill"],shade=True,color='r') ?...7、点对图 刻画数据集一对变量之间相互关系,并对单变量做出分布直方图 1、使用pairplot()函数绘制点对图 sns.set(style="ticks", color_codes=True)...2、设置hue参数,拟合出不同水平的直线 sns.lmplot(x="total_bill",y="tip",hue="smoker",data=tips,palette='Set1') ?
图形展示 图形解读 ❝此图使用经典的企鹅数据集进行展示,在散点图的基础上按照分组添加拟合曲线及回归方程与R,P值,后使用ggExtra添加密度曲线与数据分布直方图,使用已有R包进行绘制非常的方便,此图大概有以下几点注意事项...❞ 1.拟合曲线的添加 ❝拟合曲线的添加在R中常用的大概有两个函数geom_smooth与ggmpisc::stat_poly_line。两者均可用于在R图形中添加平滑线或拟合线,需要选择正确的模型。...它们有一些相似之处,但也有一些关键的区别。 ❞ stat_poly_line 是一个在 ggplot2 图形中添加多项式回归线的函数。这个函数直接计算多项式回归模型,并将拟合线添加到图形上。...它允许指定多项式的阶数,即回归方程中最高次项的次数。可直接在图形上添加拟合线,而不是基于数据点的平滑。 geom_smooth是一个更通用的函数,用于在 ggplot2 图形中添加平滑曲线或拟合线。...它可以自动选择平滑参数,还可以显示拟合线周围的置信区间。 回归方程的添加 ❝stat_poly_eq:用于添加多项式回归方程和相关统计量(如 R2、p 值等)的标签。
其中,X求导并让方程等于零,可以得到极值点的偏移量为: ? 对应极值点,方程的值为: ?...3.1.1、梯度直方图 在完成关键点的梯度计算后,使用直方图统计领域内像素的梯度和方向。梯度直方图将0~360度的方向范围分为36个柱(bins),其中每柱10度。...实际编程实现中,就是把该关键点复制成多份关键点,并将方向值分别赋给这些复制后的关键点,并且,离散的梯度方向直方图要进行插值拟合处理,来求得更精确的方向角度值。...假设我们在第i个小柱子要找一个精确的方向,那么由上面分析知道: 设插值抛物线方程为h(t)=at^2+bt+c,其中a、b、c为抛物线的系数,t为自变量,t∈[-1,1],此抛物线求导并令它等于0。...即h(t)´=0 得tmax=-b/(2a) 现在把这三个插值点带入方程可得: ?
Machine Learning Mastery 计算机视觉教程 通道在前和通道在后图像格式的温和介绍 深度学习在计算机视觉中的 9 个应用 为 CNN 准备和扩充图像数据的最佳实践 8 本计算机视觉入门书籍...Machine Learning Mastery 生成对抗网络教程 Pix2Pix 生成对抗网络的温和介绍 大型生成对抗网络 BigGAN 的温和介绍 9 本关于生成对抗网络的书 如何用 Keras...——风格生成对抗网络 如何在 Keras 开发最小二乘生成对抗网络 如何识别和诊断 GAN 故障模式 开始使用 GANs 的最佳资源 如何在 Keras 中从头实现半监督 GAN(SGAN) 生成对抗网络模型之旅...包 使用 Caret R 包比较模型并选择最佳方案 在 R 中比较机器学习算法 R 中的凸优化 使用可视化更好地理解你在 R 中的数据(今天你可以使用的 10 个秘籍) 将 Caret R 包用于数据可视化...使用描述性统计更好地理解你的 R 数据 如何用 R 评估机器学习算法 使用 caret 包选择特征 在 R 中保存并最终确定您的机器学习模型 如何在 R 中开始机器学习(一个周末内获得结果) 如何使用
最后就可以计算 ? R^2的指标就介绍到这里,这是一个很好的量化模型结果对于响应变量解释程度的指标,那么接下来,我们怎么知道这个是不是随机造成造成的呢?怎么样确信这个结果不是偶然?...pfit-pmean可以叫做:自由度,其实就是拟合方程的系数量-平均值的系数量(一般就是1) n-pfit就是样本量数量-拟合方程的系数数量。...要减去pfit的原因是随着你方程中的系数项越多,你也需要更多的样本数量才能够去拟合方程。比如你需要2个点才能确定一条直线,3个点来确定一个平面。...我们可以古典查表法,当然实务肯定也是用Python模块计算 import numpy as np from scipy.stats import chi2_contingency, fisher_exact...) p 0.59094761107842753 总结: R^2可以量化模型响应变量与因变量间的关系强弱 p-value检验可以决定拟合方程的可靠程度。
在这部分,我们将观察我们的回归拟合未知数据的情况,我们在上一节拟合了一个回归方程,但是没有太过留意我们实际运用它时的表现如何。我们拟合过模型以后,第一个问题很清晰:模型的拟合程度怎么样?...让我们使用lr对象和波士顿数据集-回顾你拟合一条穿过数据的直线的那部分代码,在经过模型拟合后,lr对象将会有很多有用的方法 How to do it...怎么做 There are some very...- predictions, plot=ax) The following screenshot shows the probability plot:以下屏幕中显示的是概率图: [l8z93qdfbu.png...它计算每一个预测值与实际值的偏差,然后平方,然后平均所有的平方项。这能够使得我们寻找的线性回归的系数集合达到最优化。...The following is the histogram that gets generated:以下是生成的直方图: image.png We might also want to look at
在这项工作中,我通过创建一个包含四只基金的模型来探索 copula,这些基金跟踪股票、债券、美元和商品的市场指数 摘要 然后,我使用该模型生成模拟值,并使用实际收益和模拟收益来测试模型投资组合的性能,以计算风险价值...对于 d 维,我们有: 并使每个 ,我们有: 如果我们对等式(2)进行微分,我们会发现 Y 的密度为: 方程 (3) 中的结果允许我们创建多变量模型,这些模型考虑了变量的相互依赖性(方程的第一部分...图 2 显示了收益图。...通过均匀分布,我们可以看到哪种类型的参数 copula 最适合。我们将拟合高斯 copula 和 t-copula,记录它们的 AIC 并查看哪一个提供了最佳拟合。...为了计算投资组合 w 的收益率 Rp,我们简单地使用矩阵代数将我们的模拟收益率 Rs 乘以权重,如 Rp = Rs × w。然后我们将 t 分布拟合到 Rp 并使用它来估计 VaR 和 ES。
然后,我使用该模型生成模拟值,并使用实际收益和模拟收益来测试模型投资组合的性能,以计算风险价值(VaR)与期望损失(ES)。 一、介绍与概述 Copulas 对多元分布中变量之间的相关性进行建模。...对于 d 维,我们有: 并使每个 ,我们有: 如果我们对等式(2)进行微分,我们会发现 Y 的密度为: 方程 (3) 中的结果允许我们创建多变量模型,这些模型考虑了变量的相互依赖性(方程的第一部分...图 2 显示了收益图。...通过均匀分布,我们可以看到哪种类型的参数 copula 最适合。我们将拟合高斯 copula 和 t-copula,记录它们的 AIC 并查看哪一个提供了最佳拟合。...为了计算投资组合 w 的收益率 Rp,我们简单地使用矩阵代数将我们的模拟收益率 Rs 乘以权重,如 Rp = Rs × w。然后我们将 t 分布拟合到 Rp 并使用它来估计 VaR 和 ES。
Scipy包含的功能有最优化、线性代数、积分、插值、拟合、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算,而这些功能都是我们在之后进行数据分析需要的。...seaborn绘制直方图:先分箱,然后计算每个分箱频数的数据分布。 sns.distplot(df['Returns'].dropna(),bins=100,color='red') ?...(x, pdf, linewidth=2, color='r') ?...斯皮尔曼等级相关系数是反映两组变量之间联系的密切程度,它和相关系数r一样,取值区间[-1,+1],所不同的是它是建立在等级的基础上计算的。...from scipy.stats import chi2_contingency from scipy.stats import chi2 stat, p_value, dof, expected =
SIFT特征的信息量大,适合在海量数据库中快速准确匹配。 SIFT算法的实质是在不同的尺度空间上查找关键点(特征点),并计算出关键点的方向。...利用DoG函数在尺度空间的Taylor展开式(插值函数)为: 上面算式的矩阵表示如下: 其中,X求导并让方程等于零,可以得到极值点的偏移量为: 对应极值点,方程的值为: 其中, X^代表相对插值中心的偏移量...3.2.2、梯度直方图抛物线插值 假设我们在第i个小柱子要找一个精确的方向,那么由上面分析知道: 设插值抛物线方程为h(t)=at2+bt+c,其中a、b、c为抛物线的系数,t为自变量,t∈[-1,1...4.1.3、梯度直方图的生成 将邻域内的采样点分配到对应的子区域内,将子区域内的梯度值分配到8个方向上,计算其权值。...sift算法比较全面的;2尤其给出了使用三维直方图来分析三线性插值,对理解描述子的生成作用很大;3 给出了源码分析和演示结果) http://wenku.baidu.com/view/d7edd2464b73f242336c5ffa.html
Scipy包含的功能有最优化、线性代数、积分、插值、拟合、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算,而这些功能都是我们在之后进行数据分析需要的。...,散点图表示因变量随自变量而变化的大致趋势,据此可以选择合适的函数对数据点进行拟合。...', label=label) # 在这个阶段,回报率有升有降 df['Returns'].plot(figsize=(20, 8)) seaborn绘制直方图:先分箱,然后计算每个分箱频数的数据分布...(x, pdf, linewidth=2, color='r') 计算分位数 分位数(Quantile),亦称分位点,是指将一个随机变量的概率分布范围分为几个等份的数值点,常用的有中位数(即二分位数...斯皮尔曼等级相关系数是反映两组变量之间联系的密切程度,它和相关系数r一样,取值区间[-1,+1],所不同的是它是建立在等级的基础上计算的。
领取专属 10元无门槛券
手把手带您无忧上云