2021年8月17日,天津农商银行发布《数据仓库Netezza替换项目-国产化数据库软件项目》单一来源采购的公示: 拟采购内容:采购数据库集群系统 GBase 8a MPP Cluster软件 拟采购供应商名称:天津南大通用数据技术股份有限公司 申请理由:结合此前我行对多家国产分布式数据库的POC测试结果,为了保证我行能采购到理想的国产数据库软件,我行将与天津南大通用数据技术股份有限公司进行单一来源采购。 2021年8月10日,天津农商银行发布《数据仓库迁移项目》单一来源采购的公示: 拟采购内容:数据仓库迁
说人类步入了信息时代,有个事情是非常重要的,就是物理世界的信息化,包括信息基础设施建设和数字化,紧接着就是如何将数字化的东西(数据)进行储存、传输、交换以及使用,这一脉络伴随着移动互联网,云计算、大数据以及各种各样智能终端的出现,显得也越来越清晰。很多人都已认可,我们可能来到一个工业革命之后,一个比我们想象地更加重要的变革时代,我们把它命名为产业互联网的时代。毕竟这一切都是互联网出现之后才发生的,无论是云,通过网络随需调用的计算资源;大数据,关联的可分析在线数据;还是各种智能终端,都要依托互联网。
实现内部部署设施到多云之间的数据迁移将加快创新速度,将业务人员从运营工作中解放出来,并在混合云和多云部署环境之间构建一座桥梁。
12月20日,在腾讯2020 Techo Park开发者大会大数据专场上,腾讯云大数据产品总经理聂晶对数据仓库近30年发展历程做出总结,并分享了他对目前行业的认知以及未来发展的判断。聂晶表示,当前技术环境变化飞速,单一主体企业难以应对数仓领域爆发式发展挑战,腾讯云希望通过开放开源的生态给用户带来更为透明和精细化的技术及产品服务,助力企业生产力加速提升。 数据仓库从1991年被正式提出,历经近30年的发展历程,企业对数据仓库的重要性感知愈加强烈,同时数据仓库在企业端越来越走向成熟和理性。 “企业不再停留
2020年12月20日,在腾讯2020 Techo Park开发者大会大数据专场上,腾讯云大数据产品总经理聂晶对数据仓库近30年发展历程做出总结,并分享了他对目前行业的认知以及未来发展的判断。聂晶表示,当前技术环境变化飞速,单一主体企业难以应对数仓领域爆发式发展挑战,腾讯云希望通过开放开源的生态给用户带来更为透明和精细化的技术及产品服务,助力企业生产力加速提升。
来源:五分钟学大数据 本文约10000+字,建议阅读10+分钟 本文将从历史的角度对数据湖和数据仓库的来龙去脉进行深入剖析。 随着近几年数据湖概念的兴起,业界对于数据仓库和数据湖的对比甚至争论就一直不断。有人说数据湖是下一代大数据平台,各大云厂商也在纷纷的提出自己的数据湖解决方案,一些云数仓产品也增加了和数据湖联动的特性。 但是数据仓库和数据湖的区别到底是什么,是技术路线之争?是数据管理方式之争?二者是水火不容还是其实可以和谐共存,甚至互为补充? 本文作者来自阿里巴巴计算平台部门,深度参与阿里巴巴大数据/数
导读:随着近几年数据湖概念的兴起,业界对于数据仓库和数据湖的对比甚至争论就一直不断。有人说数据湖是下一代大数据平台,各大云厂商也在纷纷的提出自己的数据湖解决方案,一些云数仓产品也增加了和数据湖联动的特性。
决策支持系统(DSS)是一种信息系统,旨在帮助决策者在复杂问题或未结构化问题中做出决策。它结合了数据、模型、分析工具和用户界面,以提供决策所需的信息和支持。DSS可以针对不同的决策场景提供多种功能和工具,包括数据查询和分析、模型建立和模拟、可视化展示、假设测试等。
顶级云计算数据仓库展示了近年来云计算数据仓库市场发展的特性,因为很多企业更多地采用云计算,并减少了自己的物理数据中心足迹。
在企业数字化转型的当下,数据仓库的云端构建成为主流趋势,Gartner 预测,到2023年全球3/4的数据库都会跑在云上。
在企业数字化转型的当下,数据仓库的云端构建成为主流趋势,Gartner 预测,到2023年全球3/4的数据库都会跑在云上。 12月20日,腾讯2020 Techo Park开发者大会大数据分论坛在北京召开。腾讯数据平台部数据中心技术总监于洋、腾讯云大数据首席产品架构师高廉墀以及腾讯云大数据团队 Ozone 项目技术负责人陈怡等嘉宾出席大会,并探讨了数据仓库的多元技术,聚焦云端数据仓库的热潮,展现腾讯数据仓库技术架构演进与未来发展。 云原生数据仓库成为风口,助力解决企业数据仓库转型升级 从企业数字化转型看,
导读:要建设数据中台,我们首先需要明确什么是数据中台,以及数据中台能为企业带来什么价值。
ClickHouse 最近发表了一篇精彩的文章,描述了 Snowflake 和 Redshift 等云数据仓库已经不能满足新的客户需求,并且指出许多企业已经发现他们的云数据仓库成本是不可持续的。
The modern data warehouse architecture creates problems across many layers. Image courtesy of Chad Sanderson.
11.11云上盛惠 多款大数据产品年终钜惠 移动推送、商业智能分析BI 智能数据分析、Elasticsearch Service 云数据仓库for Apache Doris 首月秒杀 19.9元、新客首购 2.5折起 老客回购/新客复购 2.8折起 ←扫码立即参与活动 购后抽奖 100%中奖率 iPad Air 、Switch 游戏机 妲己机器人、虎年公仔、代金券 快速了解产品 1.移动推送:安全快速稳定的移动消息推送服务,支持 App 推送、应用内消息等多种消息类型,有效提升用户活跃度。 2.商业智能分
1.腾讯云BI:提供从数据接入到模型分析、数据可视化呈现全流程 BI 能力,帮助经营者快速获取决策数据依据。
原文地址:https://dzone.com/articles/criteria-for-selecting-a-data-warehouse-platform
导读:本文介绍数据治理有关的名词和概念。当然,与数据治理相关的概念非常多,以下仅罗列几个常见的。
下午好,我叫李进勇,是政采云数据平台架构师,在政采云主要负责大数据底层架构和数据工程化方面,同时也是 Dolphinscheduler的PMC成员。今天我将重点分享关于Apache Dolphinscheduler 2.0.9版本中一些优秀的功能。选择这个主题的原因是因为在2.0.X版本的演进中,我们致力于打造一个稳定且功能强大的工作流编排调度平台,使得工作流编排和批处理调度变得更加稳定可靠,因此将此主题命名为“聚焦调度”。
SNP Glue是SNP的集成技术,适用于任何云平台。它最初是围绕SAP和Hadoop构建的,现在已经发展为一个集成平台,虽然它仍然非常专注SAP,但可以将几乎任何数据源与任何数据目标集成。
本项目案例由帆软投递并参与“数据猿年度金猿策划活动——《2022大数据产业年度创新服务企业》榜单/奖项”评选。
“智能座舱、网联、OTA技术将助力车厂形成长期竞争力,实现未来数字化服务的营收。”近日,在标普全球(S&P Global)举行的2022汽车解决方案网络研讨会上,标普全球汽车预测,到2028年,车联网将成为新车标配。整车联网率与OTA搭载率的不断上升,为整车智能化的提升奠定了基础。在此背景下,探索车内个性化服务的商业空间,拓展智能服务创新模式将成为未来车企竞争的关键。
2021 年初,在 InfoQ 全年技术趋势展望中,数据湖与数据仓库的融合,成为大数据领域的趋势重点。直至年末,关于二者的讨论依然热烈,行业内的主要分歧点在于数据湖、数据仓库对存储系统访问、权限管理等方面的把控;行业内的主要共识点则是二者结合必能降低大数据分析的成本,提高易用性。
“【报告下载】后台回复关键词“数据智能报告”可免费下载数据猿最新发布的完整高清版《2021中国数据智能产业发展报告》
近期因工作需要,尝试使用一些数据可视化手段做产品运营分析。自己之前对可视化的理解仅仅限于excel做做图表,但深入下去发现数据可视化远不限于此,可以说很多的工作的基本功。掌握必要的数据可视化手段,可以大大提升你的工作效率。下面将通过示例,尝试使用数据可视化手段分析国家、地域经济发展状态。数据来自于国家统计局(http://data.stats.gov.cn)公开披露数据(少部分2019年数据来自于互联网)。
当前,数据工程是一个令人兴奋的主题,这是有原因的。自出现以来,数据工程领域的发展脚步就从未放缓。新技术和 新概念 最近出现得特别快。2022 年年底就快到了,现在是时候回过头来评估下数据工程当前的状态了。
摘 要:通过对数据处理阶段性发展的解析,分析大数据、人工智能技术的发展趋势。结合实际生产需求,验证了基于容器云架构的新一代大数据与人工智能平台在数据分析、处理、挖掘等方面的强大优势。
数据湖是一个集中的存储库,允许您以任何规模存储所有结构化和非结构化数据。您可以按原样存储数据,而不必首先构造数据,并运行不同类型的分析—从仪表板和可视化到大数据处理、实时分析和机器学习,以指导更好的决策。
我们正在经历一个 Data + AI 的黄金时期,AI 已在大数据领域展现出巨大的潜力。QCon 全球软件开发大会·广州站邀请到 Datafuse Labs 联合创始人张雁飞老师分享题为《Databend: 大模型时代的 Cloud Warehouse 设计探索》的演讲,本文为 Databend 公众号由此整理。 完整幻灯片下载: https://qcon.infoq.cn/2023/guangzhou/presentation/5257
通过对中台鼻祖SuperCell研究可以发现它所提倡的中台的理念:大中台,小前台,是建立在这四个条件下的:一、足够大的行业和市场——游戏行业;二、具有顶级优秀的前台小团队;三、对中台技术的长期持续投资;四、充分赋权,弱化管理,充分发挥前台团队的创造性。
说到数据库相信很多人都知道,对于很多的公司来说,公司的品种越多,成立的时间越久,对于储存数据的电脑就会要求越高,而且后期还有可能会出现数据丢失的情况。为了防止此种情况的发生,并有效地储存数据资料,就有了云数据仓库。那么什么是云数据仓库?云数据仓库世界排名的厂商有哪些?
这篇博文中提出的建议并不新鲜。事实上许多组织已经投入了数年时间和昂贵的数据工程团队的工作,以慢慢构建这种架构的某个版本。我知道这一点,因为我以前在Uber和LinkedIn做过这样的工程师。我还与数百个组织合作,在开源社区中构建它并朝着类似的目标迈进。
作者:沃纳•威格尔(Werner Vogels),亚马逊全球副总裁兼CTO 翻译:腾讯科技 2014年,我们见证了云计算如何推动消费产品和企业级产品领域的伟大创新,而成为不同规模组织的新常态。如今,
为适应数据应用需求,大数据平台架构持续演进,历经数据仓库、数据湖两个阶段。2020年,湖仓一体概念提出,湖仓一体架构因能实现数据资产统一管理、降低数据冗余、降低大数据平台架构运维复杂性,将成为大数据平台的主流架构。
如果企业采用大数据技术,那么必然会使用云计算技术,因为云平台已经成为存储和处理大量数据的标准平台。随着云计算巨头致力于争夺市场领先地位,云计算服务将在2020年迅速增长。
2021 年一个有趣的新变化就是:Building the modern stack with open-source data solutions,换成比较容易理解的话,就是基于开源软件构建自己的数据处理流程。如果是在国内玩大数据的人,可能对此还有些不太理解(比如我),现在各家互联网公司基于 Hadoop 生态圈等一系列开源组件构建的大数据平台解决方案早就已经成熟,那modern data stack价值在哪呢?通过对What I Learned From The Open Source Data Stack Conference 2021的阅读,我发现这是为了解决传统企业的数字化转型问题的,让这些企业也能使用上方便高效的处理工具洞察数据,而不用局限于某一家提供闭源的商业解决方案的公司。用文中的话来说,就是通过开源软件,企业可以自己掌控数据,保证用户数据隐私安全,而不用担心数据被第三方公司利用。
作为程序员,我们写的大多数商业项目,往往都需要用到大量的数据。计算机的内存,可以实现数据的快速存储和访问。
抗击疫情,腾讯云在行动。数据中台被誉为大数据的下一站,成为了人们谈论的焦点,2019年也被称为数据中台元年。但是数据中台是什么?它和数据仓库、商业智能、大数据平台有什么区别?它的主要功能是什么?本文是对TVP史凯老师的直播演讲整理,为大家剖析数据中台的愿景和本质。
数据库行业正走向分水岭。 过去几年,全球数据库行业发展迅猛。2020年,Gartner首次把数据库领域的魔力象限重新定义为Cloud DBMS,把云数据库作为唯一的评价方向;2021年,Gartner魔力象限又发生了两个关键的变化: 1、Snowflake和Databricks两个云端数据仓库进入领导者象限; 2、放开了魔力象限的收入门槛限制,SingleStore、Exasol、MariaDB、Couchbase等数据库新势力首次进入榜单。 某种程度上,这种变化的背后,暗示着全球数据库已经进入发展的黄金时
引言 人工智能、大数据与云计算三者有着密不可分的联系。人工智能从1956年开始发展,在大数据技术出现之前已经发展了数十年,几起几落,但当遇到了大数据与分布式技术的发展,解决了计算力和训练数据量的问题,开始产生巨大的生产价值;同时,大数据技术通过将传统机器学习算法分布式实现,向人工智能领域延伸;此外,随着数据不断汇聚在一个平台,企业大数据基础平台服务各个部门以及分支机构的需求越来越迫切。通过容器技术,在容器云平台上构建大数据与人工智能基础公共能力,结合多租户技术赋能业务部门的方式将人工智能、大数据与云计算进行
说人类步入了信息时代,有个事情是非常重要的,就是物理世界的信息化,包括信息基础设施建设和数字化,紧接着就是如何将数字化的东西(数据)进行储存、传输、交换以及使用,这一脉络伴随着移动互联网,云计算、大数据以及各种各样智能终端的出现,显得也越来越清晰。很多人都已认可,我们可能来到一个工业革命之后,一个比我们想象地更加重要的变革时代,我们把它命名为产业互联网的时代。毕竟这一切都是互联网出现之后才发生的,无论是云,通过网络随需调用的计算资源;大数据,关联的可分析在线数据;还是各种智能终端,都要依托互联网。同时这些
随着互联网的快速发展,云计算也成了很多企业的基础配置。特别是一些大企业对于云计算的需求量是很大的,同时对于云数据库的要求也比较高,特别是在安全性与可靠性方面。那么云数据仓库租用价格是多少?云数据仓库的优势有哪些
从大数据发展的历史长河来看,谷歌的“三驾马车”—— 《GFS》、《MapReduce》和《BigTable》,加上亚马逊的一篇关于 Dynamo 系统的论文奠定了大数据时代发展的基础。从“大数据之父”道格·卡丁创造了 Hadoop 到现在许多厂商开始单独造轮子、做开源,大数据的发展首先是获得了大规模数据的处理能力,然后再解决了数据的分析与挖掘问题,到如今又开始解决“如何实时查询数据”的问题,从近 20 年的发展中基本可以看出,这些演进的背后都是由企业需求和业务发展驱动的。 英特尔院士、大数据技术全球 CTO
导读:企业数据指的是企业内部员工及其合作伙伴跨越不同部门、不同地点而共享,跨越不同大洲而传播的数据。这些数据对企业具有很高的价值,包括财务数据、业务数据、员工个人数据等,企业花费了大量时间和金钱来保证数据在各方面的安全和质量。
以数据洞察力为导向的企业 每年增长 30% 以上。数据有助于公司排除决策错误。团队可以利用数据结果来决定构建哪些产品、增加哪些特性以及追求哪些增长。
一本关于如何调和看似相似但不同的趋势的入门书,这些趋势使数据团队难以解决棘手的“一次无处不在”的问题。
数据猿导读 随着数据量的不断增大、接入的系统越来越多,系统加工效率逐步降低,满足内部数据分析和监管机构的监管数据不断增加的需求,农业银行在2013年开始建设完全自主可控的大数据平台。 本篇案例为数据猿
相比于普通的自己做的数据库而言,云数据仓库的储存空间更大,安全性更高。而且随着市场经济的发展,对于云数据仓库的需求也更大。那么云数据仓库市场规模有多大?云数据仓库有什么优势?
英国牛津大学教授维克托·迈尔-舍恩伯格在其所撰写的《大数据时代》中表述,大数据时代是“已经发生的未来”,而在这个已经发生的未来里,没有旁观者。
从SuperCell看数据中台 通过对中台鼻祖SuperCell研究可以发现它所提倡的中台的理念:大中台,小前台,是建立在这四个条件下的:一、足够大的行业和市场——游戏行业;二、具有顶级优秀的前台小团队;三、对中台技术的长期持续投资;四、充分赋权,弱化管理,充分发挥前台团队的创造性。 从Gartner分层架构体系看中台 从理论体系角度来看,可以参考Pace-Layered架构。Pace-Layered起源于Shearing-Layered,指的是将建筑从生命周期的维度划分7个不同的节奏:地理位置、结构、外立
领取专属 10元无门槛券
手把手带您无忧上云