首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Spark RDD 整体介绍

    RDD 介绍     RDD 弹性分布式数据集          弹性:具有容错性,在节点故障导致丢失或者分区损坏,可以进行重新计算数据         分布式: 数据分布式存储,分布式计算(分布式执行)         数据集:传统意义上的数据集,不过这个数据集不是真实存在的,只是一个代理,正真数据集的获取 需要通过Task来或者     RDD 真正意义上不存储数据,只是代理,任务代理,对RDD的每次操作都会根据Task的类型转换成Task进行执行     Spark中关于RDD的介绍:         1. 分区列表(分区有编号,分区中包含的切片迭代器)         2. 提供了切片的计算入口函数(RDD具有一些列的函数(Trans/Action))         3. 其他RDD的一系列依赖(一个RDD 可以依赖于其他RDD)         4. (可选) 分区RDD (一个RDD也可以是一个分区RDD,可以对分区RDD进行处理)         5. (可选) 对RDD提供了一系列的计算函数 (RDD提供了对一些了切片的首选执行方法)     RDD 有俩类函数,transformations (懒加载)/Action(立即执行)     transformations 与Action最明显的区别在于:         1. transformations  为懒函数,action是实时函数         2. transformations 执行完毕后任然为RDD ,但是Action 执行完毕为 scala数据类型。     transformations函数为懒加载函数,调用该函数时函数不会立即执行,只记录函数执行操作,相当于pipeline,只是定义了RDD的执行过程,只有当Action函数出发以后,才会调用前面的Transformation。     Action函数为实时函数,执行了就会通过Master下发Task任务到Worker端,执行相应的处理。     transformations类函数:此类函数只会记录RDD执行逻辑,并不正真下发任务执行数据处理     函数列表:

    01

    伴鱼数据质量中心的设计与实现

    日常工作中,数据开发工程师开发上线完一个任务后并不是就可以高枕无忧了,时常会因为上游链路数据异常或者自身处理逻辑的 BUG 导致产出的数据结果不可信。而这个问题的发现可能会经历一个较长的周期(尤其是离线场景),往往是业务方通过上层数据报表发现数据异常后 push 数据方去定位问题(对于一个较冷的报表,这个周期可能会更长)。同时,由于数据加工链路较长需要借助数据的血缘关系逐个任务排查,也会导致问题的定位难度增大,严重影响开发人员的工作效率。更有甚者,如果数据问题没有被及时发现,可能导致业务方作出错误的决策。此类问题可统一归属为大数据领域数据质量的问题。本文将向大家介绍伴鱼基础架构数据团队在应对该类问题时推出的平台化产品 - 数据质量中心(Data Quality Center, DQC)的设计与实现。

    03
    领券