首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数据挖掘10算法详细介绍

想初步了解下怎样数据挖掘,看到一篇不错的文章转载过来啦~ 转自:http://blog.jobbole.com/89037/ 在一份调查问卷中,三个独立专家小组投票选出的十最有影响力的数据挖掘算法...只有这样之后 SVM 才有能力对新数据进行分类。 为什么我们要用 SVM 呢? SVM 和 C4.5体上都是优先尝试的二类分类器。...关联规则学习是学习数据库中不同变量中的相互关系的一种数据挖掘技术。...在数据挖掘领域,最大期望算法(Expectation-Maximization,EM) 一般作为聚类算法(类似 kmeans 算法)用来知识挖掘。...算法的优势是:对于数据挖掘和聚类,观察到遗失的数据的这类数据点对我们来说很重要。我们不知道具体的类,因此这样处理丢失数据对使用 EM 算法做聚类的任务来说是很关键的。

1.9K40

数据挖掘算法--K近邻算法

逼近离散值函数f: Ân_V的k-近邻算法 训练算法: 对于每个训练样例,把这个样例加入列表training_examples分类算法: 给定一个要分类的查询实例xq 在training_examples...1-近邻算法把xq分类为正例,然而5-近邻算法把xq分类为反例。 右图是对于一个典型的训练样例集合1-近邻算法导致的决策面。...三、距离加权最近邻算法 对k-近邻算法的一个显而易见的改进是对k个近邻的贡献加权,根据它们相对查询点xq的距离,将较大的权值赋给较近的近邻。...四、对k-近邻算法的说明 按距离加权的k-近邻算法是一种非常有效的归纳推理方法。它对训练数据中的噪声有很好的鲁棒性,而且当给定足够大的训练集合时它也非常有效。...python版本: 这里实现一个手写识别算法,这里只简单识别0~9熟悉,在上篇文章中也展示了手写识别的应用,可以参考:机器学习与数据挖掘-logistic回归及手写识别实例的实现 输入:每个手写数字已经事先处理成

1.1K50
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据挖掘】详细解释数据挖掘中的 10 算法(下)

    举个 AdaBoost 算法的例子:我们开始有3个弱学习器,我们将在一个包含病人数据数据训练集上对他们做10轮训练。数据集里包含了病人的医疗记录各个细节。...最后,算法灵活通用,AdaBoost 可以加入任何学习算法,并且它能处理多种数据。 AdaBoost 有很多程序实现和变体。...和存储训练数据算法不同,懒散学习法在训练过程中不需要做许多处理。只有当新的未被分类的数据输入时,这类算法才会去做分类。...这是个监督算法还是非监督的呢?因为 kNN 算法提供了已经被分类好的数据集,所以它是个监督学习算法。 为什么我们会用 kNN?便于理解和实现是我们使用它的两个关键原因。...第四步:计算其他类时也做类似的计算: 因为0.252于0.01875,Naive Bayes 会把长形,甜的还是黄色水果分到香蕉的一类中。 这是个监督算法还是非监督算法呢?

    1.4K60

    数据挖掘】详细解释数据挖掘中的 10 算法(上)

    在一份调查问卷中,三个独立专家小组投票选出的十最有影响力的数据挖掘算法,今天我打算用简单的语言来解释一下。...Orange 是一个用于数据挖掘的开源数据可视化和分析工具,它的决策树分类器是用 C4.5实现的。 分类器是很棒的东西,但也请看看下一个聚类算法…. 2. k 均值聚类算法 它是做什么的呢?...关联规则学习是学习数据库中不同变量中的相互关系的一种数据挖掘技术。...在数据挖掘领域,最大期望算法(Expectation-Maximization,EM) 一般作为聚类算法(类似 kmeans 算法)用来知识挖掘。...算法的优势是:对于数据挖掘和聚类,观察到遗失的数据的这类数据点对我们来说很重要。我们不知道具体的类,因此这样处理丢失数据对使用 EM 算法做聚类的任务来说是很关键的。

    1.2K51

    10数据挖掘算法及其简介

    AiTechYun 编辑:xiangxiaoshan 我希望你能把这篇文章作为一个跳板,学习更多关于数据挖掘的知识。 算法如下: 1. C4.5 2. k-means 3. 支持向量机 4....为了做到这一点,C4.5给出了一组已经分类的数据。分类器是数据挖掘中的一个工具,它取一堆数据来表示我们想要分类的东西,并试图预测新数据属于哪个类。 例如,假设在患者数据集中。...这是一种非常受欢迎的用于研究数据集的聚类分析技术。 聚类分析是一组用于形成群体的算法家族,这些算法的组成员更相似。集群和组是聚类分析的同义词。 例如,假设我们有一个患者数据集。...4.Apriori Apriori算法学习关联规则,并应用于包含大量事务的数据库。 关联规则学习是一种数据挖掘技术,用于学习数据库中变量之间的相互关系和关系。 例如,假设我们有一个超市交易数据库。...你可以将数据库看作是一个巨大的电子表格,其中每一行代表一个客户交易,每一列都代表着一种不同的食品。 5.EM 在数据挖掘中,期望最大化(EM)通常被用作知识发掘的聚类算法(比如k – means)。

    91770

    数据挖掘算法汇总_python数据挖掘算法

    今天说一说数据挖掘算法汇总_python数据挖掘算法,希望能够帮助大家进步!!!...前言:   找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位...线性回归优点:   实现简单,计算简单; 缺点:   不能拟合非线性数据; KNN算法:   KNN即最近邻算法,其主要过程为:   1....另外噪声和非相关性特征向量的存在会使K近邻算法的准确性减小。   近邻算法具有较强的一致性结果。随着数据趋于无限,算法保证错误率不会超过贝叶斯算法错误率的两倍。...依次从m,b,a,c,f的条件模式基上挖掘频繁项集,有些项需要递归的去挖掘,比较麻烦,比如m节点,具体的过程可以参考博客:Frequent Pattern 挖掘之二(FP Growth算法),里面讲得很详细

    53810

    数据挖掘经典算法

    数据挖掘经典算法 一、 C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3 算法....另外,算法还假设均方误差是计算群组分散度的最佳参数。 三、数据挖掘经典算法(3) Svm 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。...四、数据挖掘经典算法(4)Apriori Apriori算法是种最有影响的挖掘布尔关联规则频繁项集的算法。它的核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。...五、数据挖掘经典算法(5) EM 最大期望算法(Expectation-maximization algorithm,又译期望最大化算法)在统计中被用于寻找,依赖于不可观察的隐性变量的概率模型中...八、数据挖掘经典算法(8) kNN 1、K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

    1.1K50

    10数据挖掘算法及其简介

    我希望你能把这篇文章作为一个跳板,学习更多关于数据挖掘的知识。 算法如下: 1. C4.5 2. k-means 3. 支持向量机 4. Apriori 5. EM 6. PageRank 7....为了做到这一点,C4.5给出了一组已经分类的数据。分类器是数据挖掘中的一个工具,它取一堆数据来表示我们想要分类的东西,并试图预测新数据属于哪个类。 例如,假设在患者数据集中。...这是一种非常受欢迎的用于研究数据集的聚类分析技术。 聚类分析是一组用于形成群体的算法家族,这些算法的组成员更相似。集群和组是聚类分析的同义词。 例如,假设我们有一个患者数据集。...4.Apriori Apriori算法学习关联规则,并应用于包含大量事务的数据库。 关联规则学习是一种数据挖掘技术,用于学习数据库中变量之间的相互关系和关系。 例如,假设我们有一个超市交易数据库。...你可以将数据库看作是一个巨大的电子表格,其中每一行代表一个客户交易,每一列都代表着一种不同的食品。 5.EM 在数据挖掘中,期望最大化(EM)通常被用作知识发掘的聚类算法(比如k – means)。

    1K130

    数据挖掘】PageRank 为什么跻身数据挖掘经典算法

    数据人有话说 Google 的 PageRank 曾是主宰 Google 排名算法的一个主要因素,一度我们看一个网站的排名,往往会先去分析它的 PageRank 是多少。...该算法由Larry Page和Sergey Brin在斯坦福大学读研时发明,这种算法的核心思想有 2 点: 1.如果一个网页被很多其他网页链接到的话说明这个网页比较重要,也就是pagerank值会相对较高...虽然因为太“亲民”而导致致命缺陷,但这个能够被载入互联网发展史册的算法,仍然值得我们近距离观察一下。不过要提醒的是,再“亲民”的算法毕竟也是个算法,基本逼格还是在的。...前言 这系列文章主要讲述2006年评出的数据挖掘10算法(见图1)。文章的重点将偏向于算法的来源以及算法的主要思想,不涉及具体的实现。如果发现文中有错,希望各位指出来,一起讨论。 ?...不过,如果有办法得到合理的PageRank初始值,还需要这个算法吗?或者说,这个严重依赖于初始值的算法有什么意义吗?

    1.2K90

    数据挖掘算法(四):Apriori(关联分析算法

    终于到了机器学习实战的第十一章了,这也是继K-均值后的第二个无监督学习算法了。...同样的该算法也是在一堆数据集中寻找数据之间的某种关联,这里主要介绍的是叫做Apriori的‘一个先验’算法,通过该算法我们可以对数据集做关联分析——在大规模的数据中寻找有趣关系的任务,本文主要介绍使用Apriori...算法发现数据的(频繁项集、关联规则)。...有了可以量化的计算方式,我们却还不能立刻运算,这是因为如果我们直接运算所有的数据,运算量极其的,很难实现,这里说明一下,假设我们只有 4 种商品:商品0,商品1,商品 2,商品3....,该算法不仅适用于零售行业,同样适用于相同技术的其他行业,如网站流量分析以及医药行业等。

    1.9K20

    数据挖掘算法之Apriori算法「建议收藏」

    Aprior算法的三性质(关联规则的三性质) 4. Aprior算法实现过程 5. 数据挖掘 5.1 寻找关联属性 5.2 生成关联规则 5.3 更加严谨的栗子 6....Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank...Aprior算法核心术语 “啤酒与尿布”是通过人工观察并发现事物规律的典型栗子,这也引出数据挖掘算法之一的Aprior算法——关联规则挖掘算法,这个算法其实并不像其他算法这么难,甚至算法本身也并没有提出什么新的概念...(算法结束) 5. 数据挖掘 如何进行数据挖掘?...FP-Growth算法需要递归生成条件数据库和条件FP-tree,所以内存开销,而且只能用于挖掘单维的布尔关联规则 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/

    71821

    数据挖掘算法-KNN算法

    算法简介 邻近算法,又叫K近邻(kNN,k-NearestNeighbor)分类算法数据挖掘分类技术中最简单的方法之一。...kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。...算法思路 如果一个样本在特征空间中的 k 个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。通常 K 的取值比较小,不会超过20。...计算测试数据与各个训练数据之间的距离 按照升序(从小到)对距离(欧氏距离)进行排序 选取距离最小的前k个点 确定前k个点所在类别出现的频率 返回前k个点中出现频率最高的类别作为测试数据的分类 关于k值的选取...KNN算法实现 鸢尾花数据集 Iris 鸢尾花数据集内包含 3 类分别为山鸢尾(Iris-setosa)、变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica),共 150

    55820

    数据挖掘算法—SVM算法

    相关概念 分类器:分类器就是给定一个样本的数据,判定这个样本属于哪个类别。...特征:在分类问题中,输入分类器的数据叫做特征。天气预测问题特征就是前一天晚上能看到星星数量和亮度。 线性分类器:线性分类器是分类器中的一种,就是判定分类结果的根据是通过特征的线性组合得到的。...线性分类器起源 在实际中我们往往遇到这样的问题:给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些数据分成两类。...就需要用到n-1维的超平面将空间切割开,数学描述: 如果用x表示数据点,用y表示类别,一个线性分类器的学习目标便是要在n维的数据空间中找到一个超平面(hyper plane),把空间切割开,W^{T}中的...这个还没有用到高维映射哪,如果再加上高维映射的处理,算法恐怕就更复杂了。所以,穷举法是不太现实的。 核函数 在原始特征的维度上,能直接找到一条分离超平面将数据完美的分成两类的情况。但如果找不到呢?

    1K30

    数据挖掘领域的十经典算法

    国际权威的学术组织the IEEE International Conference on Data Mining(ICDM)2006年12月评选出了数据挖掘领域的十经典算法:C4.5、k-means...能够对不完整的数据进行处理C4.5算法有如下优点:产生的分类规则利于理解,准确率高。...缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效K-means算法(K均值算法)k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割...The Apriori algorithmApriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。...其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。

    12610

    从小白视角理解『数据挖掘算法

    因为可以直接访问你,所以引入阻尼因子的概念; 海洋除了有河流流经,还有雨水,但是下雨是随机的; 提出阻尼系数,还是为了解决某些网站明明存在大量出链(入链),但是影响力却非常的情形。...二、Apriori(关联分析) 关联关系挖掘,从消费者交易记录中发掘商品与商品之间的关联关系。 原理 1.支持度 某个商品组合出现的次数与总次数之间的比例。...扩展:FP-Growth 算法 Apriori 算法需要多次扫描数据库,性能低下,不适合大数据量。...FP-growth算法,通过构建 FP 树的数据结构,将数据存储在 FP 树中,只需要在构建 FP 树时扫描数据库两次,后续处理就不需要再访问数据库了。...到这里,10算法都已经说完了,其实一般来说,常用算法都已经被封装到库中了,只要导入相应的模型即可。 -END-

    62120

    【学习】数据挖掘领域十经典算法

    数据挖掘 国际权威的学术组织ICDM,于06年12月年评选出的数据挖掘领域的十经典算法: 1 C4.5 分类决策树算法 决策树构造方法其实就是每次选择一个好的特征以及分裂点作为当前节点的分类条件。...2 k-Means聚类 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割(k 它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心...在分开数据的超平面的两边建有两个互相平行的超平面,分隔超平面使两个平行超平面的距离最大化。 假定平行超平面间的距离或差距越s,分类器的总误差越小。...同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。 理论上,NBC模型与其他分类方法相比具有最小的误差率。...PPV课大数据ID: ppvke123 (长按可复制) 本公众号专注大数据数据科学领域,分享领域知识和相关技术文章,探索大数据商业价值,培养和挖掘数据专业人才,欢迎大家关注!

    81150
    领券