一些数据科学家(天真地)认为过采样更好,因为其会得到更多的数据,而欠采样会将数据丢掉。但请记住复制数据不是没有后果的——因为其会得到复制出来的数据,它就会使变量的方差表面上比实际上更小。...而过采样的好处是它也会复制误差的数量:如果一个分类器在原始的少数类数据集上做出了一个错误的负面错误,那么将该数据集复制五次之后,该分类器就会在新的数据集上出现六个错误。...但如果只是简单的随机抽样也难免会出现问题,因为任意两次的随机抽样中,可能会有重复被抽到的数据,所以经过多次随机抽样后叠加在一起的数据中可能会有不少的重复值,这便会使数据的变异程度减小。...},测试集数据长度:{len(test)}') train.sample(3) 训练集数据长度:14000,测试集数据长度:6000 X1 X2 X3 X4 X5 cls 6787 0.450326...而且recall是以阈值为 0.5 来计算的,那我们就可以简单的认为预测的欺诈概率大于0.5就算欺诈了吗?还是说如果他的潜在欺诈概率只要超过 20% 就已经算为欺诈了呢?
企业面临欺诈风险?...用我们的沉淀,给企业足够的“安全感” 腾讯云发布天御反欺诈服务 随着互联网理财、P2P 金融的快速发展,带有恶意目的的骗贷,骗保、洗钱等恶意行为也形成了新的地下产业,这些黑色产业链给企业品牌带来了严重的经济损失...基于企业的痛点,腾讯云通过大数据分析能力,以及在对抗社交诈骗、电商刷单、保驾互联网银行和支付业务安全上累积的实战经验,发布天御反欺诈服务,解决企业被欺诈的风险,让企业专注于业务的发展。...天御反欺诈服务,基于腾讯管家平台和社交生态所积累的海量恶意数据,以及通过行为识别,画像计算等能力,精准识别出恶意用户,并通过服务的方式通知企业客户进行跟踪标记和拦截等处理方式。 ?...一网打尽以上威胁与风险,为你们做到「天下无贼」 如何获取腾讯云天御反欺诈服务 客户可通过腾讯云工单系统提交工单咨询该服务或者拨打95716咨询
比如银行和公安经侦监控资金账户,当有一段时间内有大量资金流动并集中到某个账户的时候很可能是非法集资,系统触发预警(图7) 一般欺诈 ?...欺诈判断1:多个用户使用相同的地址、银行卡、身份证、电话等其他信息 电子商务的欺诈 ? 欺诈判断2:一个ip或Cookies 服务于多个信用卡或用户。 欺诈判断3:信息不一致。
https://blog.csdn.net/chengyuqiang/article/details/88822283 1、 脱敏后的数据文件 ? ?...最后一列Class,0为正常,1为欺诈 2、程序解读 2.1 读取文件 #!...:') print(data.describe()) print(data.sum()) 每个单一属性的欺诈记录与整车记录的差异统计: Time V1...:', ratio) y_train.Fraud *= ratio y_test.Fraud *= ratio print('训练数据的数量:\n', y_train.Fraud) print('测试数据的数量...:\n', y_train.Fraud) 数据的占比: 578.2893401015228 训练数据的数量: 22023 0.0 185560 0.0 112703 0.0 165996
; 第 3 步,利用系统权限直接下载备份数据库,或查找数据库链接,将其导出到本地 技术攻击 技术手段包括利用 web 应用及服务器漏洞、远程下载数据库文件、水坑攻击、XSS 劫持。...洗库 “洗库”,是指黑客、欺诈分子在完成拖库后,通过技术手段将有价值的用户数据归纳分析,变卖给黑产、欺诈分子变现的行为。...解决方案 将贷前欺诈风险筛查分为 7 大板块: 设备反欺诈 身份核验 信息核验 历史行为检验 反欺诈综合评分 团伙欺诈排查 人工审批部分 设备反欺诈主要针对申请人申请设备是否存在异常来评判风险情况,而身份和信息核验主要针对申请人是否本人以及提供的基本信息是否可信等...可以把表示不同实体与关系的多个图叠加形成一个大图,并且可以在该大图上定义不同类的实体之间的新的关系,我们把这样混合多个实体与关系的图称之为图谱 关系图谱在团伙欺诈中的运用: 一致性检验:一致性检验的思路就是尝试推导出申请人信息与关系图谱不一致的地方...总结 反欺诈是一项长期的工作,反欺诈的技术手段在提升,欺诈分子也在不断优化攻击方式,金融信贷机构需要对黑产产业进行监控,才能做到知己知彼,百战不殆。
数据猿导读 今年年内,国内外数家反欺诈服务提供商获得了数百万至数千万美元融资,反欺诈已经成为大数据领域一个新的热门话题。...编译 | 大文 据ChicagaoInno消息,美国反欺诈公司Precognitive于日前宣布,其获得了125万美元的种子轮融资。本轮融资由科拉松资本(Corazon Capital)领投。...Precognitive通过分析用户与在线服务之间的交互行为数据,向客户提供反欺诈预警。 其创始人Sam Bouso表示,目前Precognitive拥有三种不同的反欺诈技术以适应不同和客户与场景。...他说:“反欺诈服务有大量数据可供挖掘,大多数解决方案都专注于在交易中进行反欺诈,但我们实际上能够通过多次访问监控设备和用户活动,从而在欺诈发生之前为客户提供预警。”...今年年内,美国Signifyd、Rippleshot,国内邦盛科技、同牛科技、数美科技、冰鉴科技等数家反欺诈服务提供商获得了数百万至数千万美元融资,反欺诈已经成为大数据领域一个新的热门话题。
按照欺诈的人数来分可分为:个体欺诈和团伙欺诈; 按照欺诈的主体来可分为第一、第二、第三方欺诈; 按照欺诈的行为可分为:金融信贷欺诈、互联网业务欺诈和信用卡欺诈三大类。...按照欺诈的行为,大的方向上可分为:金融信贷欺诈、互联网业务欺诈和信用卡欺诈三大类,如果进一步 细分落到具体的场景上有:盗刷、薅羊毛、骗贷、套现、刷单、 刷好评等行为,根据不同的欺诈场景的应对方法是有所不同的...在此背景下,为避免营销资源浪费,在加强活动规则设计的同时,亟需运用技术手段搭建营销反欺诈系统,以保护良好营销环境,提升营销效果。...由于欺诈形式大都是未知、复杂多样的,本方案通过数据分析及无监督检测的方式对有监督模型做补充。...现实中,羊毛党会结合第三、四类薅羊毛方式,并存在与平台、商家瓜分利益,发展趋势更具规模化、产业化,这个是营销反欺诈的主要目标。
一年多以前,有朋友让我聊一下你们的大数据反欺诈架构是怎么实现的,以及我们途中踩了哪些坑,怎么做到从30min延迟优化到1s内完成实时反欺诈。...这套架构我做的时候主要领域是信贷行业的大数据反欺诈,后来也看过电商的架构,也看过金融大数据的架构,发现其实大家使用的其实也差不多是这个套路,只是在各个环节都有不同的细节。...比如运营商通讯数据、比如大型电商的行为数据、比如各种保险数据,以及各个机构贷款记录的互相沟通,这些数据源,都非常核心也都非常值钱,是现在反欺诈非常核心的数据。...当然也有更加粗暴更加高效的做法,就是直接购买外部的黑名单数据,这让反欺诈变得更加简单,遇到就直接拒,可以减少非常的人力物力成本去做其他的核查。 数据抽取 ?...经过探索和咨询,最终确认了 Neo4j 这种图数据库不仅仅提供数据查询服务,还做了基于定制化的社交网络分析的插件化开发,把我们的反欺诈服务以插件化的形式部署到服务器中,这就减少了非常多的网络开销,保障了我们服务的秒级响应
为了解决这一问题,反欺诈技术应运而生。本文主要介绍反欺诈(羊毛盾)API 的工作原理、作用、应对的风险、应用场景以及使用教程,识别和阻止欺诈行为,保护用户的权益和提升平台的安全性。...反欺诈(羊毛盾)API 的应用原理图片反欺诈(羊毛盾)API 的作用图片反欺诈(羊毛盾)API 可以应对什么风险反欺诈(羊毛盾)API 可以对多种欺诈行为进行识别和预防,从而帮助企业降低欺诈风险和经济损失...数据真实性测评针对虚假用户体量、虚假活动数量的困扰,帮助投资者做出正确的决策,规避风险,减少损失。在线支付在线支付时用于检测是否存在欺诈行为,如信用卡欺诈、虚假退款等。...反欺诈(羊毛盾)API 的使用教程1.申请免费试用 API注册登录 【APISpace】之后,在 反欺诈(羊毛盾)API 详情页可以看到【免费试用】的按钮,点击即可获得相应的免费次数。...(羊毛盾)反机器欺诈 API 作为一种强大的技术工具,在网络安全领域得到了广泛的应用,帮助用户识别和阻止潜在的欺诈行为,提供了一个安全可靠的网络环境。
前言反欺诈(羊毛盾)反机器欺诈 API,是一种基于大数据分析和模型产品的技术,通过输入手机号、手机 IP 地址进行检测,帮助客户识别大量存在恶意的账号。...反欺诈(羊毛盾)API 的作用图片反欺诈(羊毛盾)API 可以应对什么风险反欺诈(羊毛盾)API 可以对多种欺诈行为进行识别和预防,从而帮助企业降低欺诈风险和经济损失,包括但不仅限于以下六种风险:图片反欺诈...数据真实性测评针对虚假用户体量、虚假活动数量的困扰,帮助投资者做出正确的决策,规避风险,减少损失。在线支付在线支付时用于检测是否存在欺诈行为,如信用卡欺诈、虚假退款等。...反欺诈(羊毛盾)API 的应用原理图片反欺诈(羊毛盾)API 的使用教程APISpace 是 国内一个较大的 API 供应平台,提供多种类型的 API 接口,包括手机号码归属地查询 API 、天气预报查询...API、手机在网状态 API 、反欺诈(羊毛盾)API 以及当前比较热门的 AI 绘画 API 等等,感兴趣的小伙伴可以去官网体验一下。
针对这一现状,腾讯安全天御、腾讯防水墙和InMobi联合发布了《2020中国移动广告反欺诈白皮书》,在深度揭秘当前移动广告欺诈常见场景、作弊手段的基础上,分析移动广告反欺诈三种主流模式,提出依托SDK集成模式从流量源头预防是移动广告反欺诈的趋势...超八成移动广告欺诈发生在品牌广告领域 品牌类广告由于接口和平台众多,缺乏完善的效果监测系统,成为移动广告欺诈的重灾区。统计数据表明,80%-85%的广告欺诈行为都发生在品牌类广告场景中。...欺诈不会消失,从源头预防成为主流 广告主、第三方平台以及媒体方在长期的反欺诈斗争中,已经总结出JavaScript模式、API模式和SDK模式等三大主流模式。...三大主流模式并行下,移动广告反欺诈态势呈现出有所缓解的趋势。随着欺诈行为的不断演变,广告主反欺诈手段也日益向专业化、复杂化发展,移动广告作弊获利会越来越难。...在这个背景下,反欺诈预防的效果要远大于事后的追溯和补救,源头预防已成为广告主、品牌主、媒体和用户都认同的趋势,无感验证API和能够直接展示媒体端底层数据的SDK集成模式,势必成为中国移动广告反欺诈的主流模式
三、 基于机器学习的反欺诈攻防案例 机器学习技术虽然在反欺诈解决方案中发挥着重要作用,但另一方面,机器学习技术也可以被不法分子用来进行欺诈。...DeviceCheck 允许开发者通过开发者自己的服务器与 Apple 服务器通讯,并为单个设备设置2bit 的数据,在保护用户隐私的同时,标识正在使用应用的设备。...构建跨行业的反欺诈技术生态,促进行业合作,整合优势资源,对于反欺诈技术的发展将能起到显著的推动作用。...最后,机器学习不光能在反欺诈中起到重要作用,也有可能成为不法分子进行欺诈的工具,并有能力对现有防御方案造成巨大威胁。因此,反欺诈研究工作不光需要关注机器学习解决方案,也应该关注基于机器学习的欺诈手段。...从攻防的角度出发,是反欺诈研究的重要课题。
极光成立于2012年,截止目前,极光已经累积覆盖60万款app,110亿移动终端,服务于25万开发者。极光的产品线包括三大体系:极光开发者服务、极光效果通、极光数据服务。...他认为要在新形势下建立有效的互联网金融反欺诈体系,关键是大数据+AI。...金融反欺诈任重道远,苏建成认为在未来金融大数据风控会呈现出三大趋势:1、欺诈套路层出不穷,反欺诈与其的对抗将长久存在;2、随着国家对个人信息保护力度的加强,大数据反欺诈公司的数据来源会受到一定的影响;3...、目前第三方反欺诈公司推出的服务产品有同质化的特点,预计行业发展到后期会竞争加剧,最终会形成几家专业化的行业巨头。...该方案共有7大核心产品,分别为智能渠道管理系统、智能进件配置平台、反欺诈平台、智能微表情面审辅助系统、定制评分卡、智能风控引擎以及终端产品——Gamma智能贷款一体机。
本文内容节选自第六届全球软件案例研究峰会宜人贷数据科学家王婷分享的《先知:人工智能助力Fintech反欺诈》实录,本文主要分享互联网金融反欺诈,通过人工智能与人工调查的结合,实现智能反欺诈的效率和准确性提升...宜人贷数据科学家王婷带来《先知:人工智能助力Fintech反欺诈》的案例分享。...【内容简介】作为中国金融科技第一股,宜人贷发布科技能力共享平台(Yirendai Enabling Platform,简称YEP共享平台),旨在以强大的金融数据能力、反欺诈智能和线上客户获取服务能力,为金融科技企业提供更强大的信用评估...、数据能力以及反欺诈能力对外做平台化的输出。...2 反欺诈云平台 先知反欺诈云平台包括三个模块: 实时数据采集 包括我们开发的SDK用户行为数据、用户授权抓取的消费数据、通话数据、信用卡数据、以及和行业内第三方合作的数据。
推荐阅读: 1,Spark Structured Streaming高级特性 2,Spark高级操作之json复杂和嵌套数据结构的操作一 3,spark调优系列之高层通用调优
数据为结构化数据,不需要抽特征转化, 但特征Time和Amount的数据规格和其他特征不一样, 需要对其做特征做特征缩放 1 credit = pd.read_csv('....# print('feature_importances_ >>>>', feature_importances_) 16 # 从大到小对特征重要性进行排序,并作图分析 17 # argsort():...对数组排序并返回排序后每个元素对应的未排序时自身所在的索引 18 # index = feature_importances_.argsort()[::-1] 19 # print('从大到小排列特征重要性...,返回每个元素的原索引 >>>>', index, len(index)) 20 21 # plt.figure(figsize=(12, 9)) 22 # 柱状图,第二个参数代表按从大到小排列的特征数据...23 # plt.bar(np.arange(len(index)), feature_importances_[index]) 24 # 柱状图x坐标:第二个参数是按特征值从大到小排列后的特征名 25
众安科技智能数据产品基于海量数据源和资深实战经验,为客户提供精细化风险管理及定制化模型搭建服务。...反欺诈 2、所属分类 金融科技 · 风控 3、产品介绍 众安科技智能数据产品基于海量数据源和资深实战经验,为客户提供精细化风险管理及定制化模型搭建服务。...通过人工智能、云平台、大数据等技术和各类金融机构无缝对接,打造“金融+场景+技术”的跨界融合,提高金融机构的服务水平,降低运营风险,为各类金融机构赋能。...通过反欺诈服务的融入,配合贷前、贷中交替低危下探,在贷后逾期率下降(6%至3%)的同时,有效提升了贷前通过率(12%至20%)并降低了贷中打扰率(7%至4%)。...普惠风控:反欺诈是有技术门槛的,我们希望通过云上的服务,本地化的咨询,可视化直观的展示,打破技术瓶颈,降低沟通成本,让天下没有难做的反欺诈。
》还将在上海隆重举办【论坛详情】【上届回顾(点击阅读原文查看)】 在论坛现场,也将颁发“技术案例奖”、“应用案例奖”、“实践案例奖”、“优秀征文奖”四大类奖项 来源:数据猿丨投递:百融金服 本文长度为6800...传统的反欺诈手段通常是每遇到一次欺诈,就将其行为特点记录下来形成“规则”,再基于规则建立防范机制,通过金融机构自有业务数据进行分析建模做反欺诈风控,但由于我国目前征信体系并不完善,数据滞后性和数据不全面问题导致金融机构只能做到一定程度的预防...百融金服凭借服务银行等金融机构的行业先入优势、超强的大数据处理和建模能力,为信贷行业用户提供包括反欺诈、贷前信审、贷中管控以及贷后管理在内的客户全生命周期产品和服务。...图3 反欺诈专家判断模型(规则引擎) 另一种是反欺诈机器学习模型,它指的是采用数据挖掘方法,基于历史(即已知的欺诈申请和正常申请)而建立的分类模型,通过机器训练利用海量数据来对借款人进行判断。...欺诈检测方面,通过收集和整理各行业、机构的黑名单信息,通过多样化的机器学习模型及大数据关联分析等技术,给银行、个人等企业提供风险管控和反欺诈的服务。
IP应用场景API:背景和工作原理IP应用场景API是一种在线调用接口,具备识别IP真人度,提升风控和反欺诈等业务能力。...它基于地理和网络特征的IP场景划分技术,将IP地址划分为18种不同的应用场景,其中包括数据中心、交换中心、家庭宽带、CDN、云网络等。...IP应用场景API反欺诈潜力IP应用场景API具备多重反欺诈潜力,有助于保护在线市场不受欺诈行为侵害:IP真人度识别: 通过分析IP地址的应用场景,API可以帮助识别是否有人工干预。...欺诈者通常使用代理服务器或虚拟专用网络(VPN)来隐藏其真实IP地址,但IP应用场景API可以揭示这种行为。这有助于企业检测虚假账户和欺诈行为。异常活动检测: 恶意IP地址往往表现出不寻常的活动模式。...数据中心和代理服务器检测: API的应用场景划分技术有助于检测是否有恶意活动来自数据中心或代理服务器,这些通常与欺诈活动相关。
代码开源地址: https://github.com/rickyxume/TianChi_RecSys_AntiSpam 实践背景 1.1 思路简述 本赛题属于结构化数据二分类任务,虽然是风控竞赛,但思考方向不局限于欺诈检测或异常检测...至此,经过前面的数据分析可以发现存在三个问题: 数据数量上,有标签的数据量较少,重复样本较多 数据质量上,特征冗余较多,存在3个无效特征 测试集和训练集的数据分布差异大 后续思考方案可以对这些问题做针对性的优化改进...2.1 数据优化 第一大方向是数据优化,包括用黑白名单做数据增广和用特征切片做特征筛选,提高数据的数量和质量。...改进方向 竞赛后续: 尝试用GNN之类的半监督图算法 图建模实现反欺诈图算法(如 FRAUDAR[13]、RICD[14] 等),离线扩充数据再做有监督学习 BTW,RICD[14]就是本次赛题出处的论文...,其实自己那时候还是一个刚接触竞赛没多久的风控小白(其实想着考研来着呜呜呜我这个菜鸡),一切只因 Datawhale 开源分享的 baseline 进的坑,后面抱着学习的心态边秋招边打比赛,最终拿到了反欺诈方向的
领取专属 10元无门槛券
手把手带您无忧上云