首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【大数据分析与挖掘技术】概述

在人工智能、机器学习、模式识别、数据库管理和图像处理等专业领域,数据挖掘技术都是必不可少的技术支持。...神经网络法主要应用于数据挖掘的聚类技术中。...Mahout可以让开发人员更方便快捷地创建智能应用程序,另外,Mahout通过应用Hadoop库可以有效利用分布式系统进行大数据分析,大大减少了大数据背景下数据分析的难度。...目前Mahout着力与三个领域——推荐(协同过滤)、聚类、分类算法的实现上,尽管理论上它可以实现机器学习中的所有技术!...(三)Mahout安装与配置 Mahout 上所有的机器学习算法是基于Java实现的,Mahout并没有提供用户接口与预装服务器或安装程序,这使得开发者拥有更加灵活自由的配置框架。

11210

【大数据分析与挖掘技术】Mahout推荐算法

方便读者从更加规范化的层次理解推荐程序;然后介绍Mahout中关于推荐部分的一些算法,讲解一个推荐程序是如何做到根据历史数据进行预测和推荐的;最后给出一个实例进行算法演示,示范如何利用Mahout进行数据分析...推而广之,倘若你想要找到你所感兴趣的事物,可以有两种策略:一种策略是观察与你兴趣相同的人喜欢什么,因为他们喜欢的对象和事物你也极有可能会喜欢。...(二)基于物品的推荐算法 基于物品的推荐算法与基于用户的推荐类似,但该算法是以物品之间的相似度进行判定的。...(四)基于线性插值的推荐算法 Mahout中实现了一种基于物品的推荐方法,与传统的基于物品的推荐方法不同的是,它不再简单地使用用户表达过偏好的物品之间的相似度,而是使用一些代数技术计算出所有物品之间的最优权重集合...推荐引擎通常需要计算用户与用户或者物品与物品之间的相似度,对于量级较大的数据源来说,Mahout提供了大量用于计算相似度的组件,如皮尔森相关度(PearsonCorrelationSimilarity)

10110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【大数据分析与挖掘技术】Mahout分类算法

    对于使用Mahout 进行分类器训练,我们并不需要了解太多算法底层的数学原理与推导过程,因此,我们仅对不同的分类算法的特点进行描述。...通常,模型做出的决策不会完全正确,但是只要满足一定的性能需求,该模型便可投入生产,在使用的过程中,模型预测的准确率应该与评估过程的准确率相同。...这种结合的方式能够大大提高数据分析的合理性与有效性。...下表列出了这几种训练算法的不同与适合场景。...比朴素贝叶斯的训练成本高一些;处理对于SGD来说过大的数据集实用有效,但有和朴素贝叶斯类似的局限性 小到中型(训练样本数量在千万以内) 随机森林 并行 使用全部类型的预测变量;训练开销高;成本高,能够实现复杂的分类,比其他技术更擅于处理数据中非线性和条件关系

    8010

    【大数据分析与挖掘技术】Mahout聚类算法

    中国有句古语叫“物以类聚,人以群分”,也就是说,人们倾向于与志趣相投的人生活在一起。...数据挖掘的目的是要从大量数据中发现有用信息,因为数据量大,这些数据看起来可能是毫无关联的,但是在聚类分析的帮助下,就可以发现数据对象之间的隐藏联系。同时,聚类分析也是模式识别过程中的一个基本问题。...数据表示阶段已经预先确定了数据中可以发现什么样的簇,在此阶段需要对数据进行规范化,除去噪声点与冗余数据;在建模阶段,产生对数据相似性与相异性度量方法,数据聚类的主要目标就是将相似的数据成员聚成一簇,将相异性较大的成员分配到不同的簇中...与密集向量不同的是,当元素为0时,创建向量并不会为其分配空间,因此被称为稀疏向量。...为了降低或者消除这种不确定性,可以采用一种被称为近似聚类算法的技术。

    8110

    大数据分析及挖掘包含哪些技术?

    大数据分析的使用者有大数据分析专家,同时还有普通用户。大数据分析与挖掘包含了哪些技术呢?...大数据分析技术 改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术...数据挖掘涉及的技术 数据挖掘涉及的技术方法很多,有多种分类法。...数据挖掘主要过程 根据分析挖掘目标,从数据库中把数据提取出来,然后经过ETL组织成适合分析挖掘算法使用宽表,然后利用数据挖掘软件进行挖掘。...传统的数据挖掘软件,一般只能支持在单机上进行小规模数据处理,受此限制传统数据分析挖掘一般会采用抽样方式来减少数据分析规模。 数据挖掘的计算复杂度和灵活度远远超过前两类需求。

    2.3K40

    Python数据分析与挖掘实战 (大数据技术丛书) - 张良均 等著

    10余位数据挖掘领域资深专家和科研人员,10余年大数据挖掘咨询与实施经验结晶。...读者在阅读过程中,应充分利用随书配套的案例建模数据,借助相关的数据挖掘建模工具,通过上机实验,以快速理解相关知识与理论。...实战篇(第6~15章),重点对数据挖掘技术在电力、航空、医疗、互联网、生产制造以及公共服务等行业的应用进行了分析。...在案例结构组织上,本书是按照先介绍案例背景与挖掘目标,再阐述分析方法与过程,最后完成模型构建的顺序进行的,在建模过程的关键环节,穿插程序实现代码。...最后通过上机实践,加深读者对数据挖掘技术在案例应用中的理解

    58310

    大数据分析挖掘培训课程

    加米谷数据分析与挖掘课程体系包括5个板块、9个阶段、200+模块以及4个真实项目实战。...、基本与高级操作、运维、编程 学习效果:掌握文档数据库MongoDB的用法,能熟练运用到项目 第四阶段 内存数据库Redis 学习内容:内存数据库Redis 学习目标:Redis基础、Redis操作、...等 学习效果:掌握网络爬虫相关知识点及开发技术 第六阶段 数据分析 学习内容:数据分析 学习目标:数据分析工具讲解、数值计算包、Pandas与数据库......第八阶段 数据分析处理进阶 学习内容:数据分析处理进阶 学习目标:Matplotlib、时间序列分析/算法、机器学习......等 学习效果:掌握数据分析处理高阶知识点,能灵活在项目中运用 第九阶段 项目实战 学习内容:项目实战 学习目标:4个数据分析与挖掘项目的实战 学习效果:通过项目实战串联所学知识点,深化理解,熟练掌握

    1.7K90

    图解大数据 | 大数据分析挖掘-Spark初步

    Apache Spark是一种用于大数据工作负载的分布式开源处理系统。它使用内存中缓存和优化的查询执行方式,可针对任何规模的数据进行快速分析查询。...Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark部署在大量的廉价硬件之上,形成集群。...Apache Spark 已经成为最受欢迎的大数据分布式处理框架之一。...DataFrame: 与RDD相似,DataFrame也是数据的一个不可变分布式集合。 但与RDD不同的是,数据都被组织到有名字的列中,就像关系型数据库中的表一样。...article-detail/106 数据科学工具速查 | Spark使用指南(SQL版) http://www.showmeai.tech/article-detail/107 张安站著,《Spark技术内幕

    2K41

    大数据挖掘有哪些技术

    数据挖掘技术虽是一项新兴的数据处理技术,但其发展速度十分迅猛,至今已经形成了决策树、神经网络、统计学习、聚类分析、关联规则等多项数据挖掘技术,极大的满足了用户的需求。   ...2、神经网络算法   神经网络是将计算机技术与现代神经生物学结合的产物,该技术是通过模拟人脑信息处理机制,对数值数据进行处理,并在处理过程中表现出一种思维、学习和记忆能力。   ...5、关联规则法   关联规则的主要优势是能对数据与数据之间的依赖关系进行准确描述,该技术能对给定事物数据库进行深入分析,寻找各数据和项目之间的内在联系,然后将所有符合支持度和置信度的,符合一定标准的关联规则进行罗列...数据挖掘是指人们从事先不知道的大量不完整、杂乱、模糊和随机数据中提取潜在隐藏的有用信息和知识的过程。...根据信息存储格式,用于挖掘的对象是关系数据库,面向对象的数据库,数据仓库,文本数据源,多媒体数据库,空间数据库,时间数据库,异构数据库和Internet。

    75820

    数据挖掘与数据分析

    2、在行业知识方面,数据分析要求对所从事的行业有比较深的了解和理解,并且能够将数据与自身的业务紧密结合起来;而数据挖掘不需要有太多的行业的专业知识。...3、交叉学科方面,数据分析需要结合统计学、营销学、心理学以及金融、政治等方面进行综合分析;数据挖掘更多的是注重技术层面的结合以及数学和计算机的集合 数据挖掘和数据分析的相似之处: 1、数据挖掘和数据分析都是对数据进行分析...同时Scala是大数据处理平台Spark的实现语言。...它们在选择测试属性采用的技术、生成的决策树的结构、剪枝的方法以及时刻,能否处理大数据集等方面都有各自的不同之处。...3.4.2 TF-IDF模型 TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索与资讯探勘的常用加权技术。

    1.3K50

    数据挖掘与数据分析

    2、在行业知识方面,数据分析要求对所从事的行业有比较深的了解和理解,并且能够将数据与自身的业务紧密结合起来;而数据挖掘不需要有太多的行业的专业知识。...3、交叉学科方面,数据分析需要结合统计学、营销学、心理学以及金融、政治等方面进行综合分析;数据挖掘更多的是注重技术层面的结合以及数学和计算机的集合 数据挖掘和数据分析的相似之处: 1、数据挖掘和数据分析都是对数据进行分析...同时Scala是大数据处理平台Spark的实现语言。...它们在选择测试属性采用的技术、生成的决策树的结构、剪枝的方法以及时刻,能否处理大数据集等方面都有各自的不同之处。...3.4.2 TF-IDF模型 TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索与资讯探勘的常用加权技术。

    1.2K20

    大数据分析技术方案

    一.目标 现在已经进入大数据时代, 数据是无缝连接网络世界与物理世界的DNA。发现数据DNA、重组数据DNA是人类不断认识、探索、实践大数据的持续过程。...大数据分析可以有效地促进营销,个性化医疗治病,帮助学生提高成绩,利于老师提高教学水平,还可以用于教学,许多产品可以用到大数据技术,如量化分析金融产品等。...必须加强大数据技术的研究并实际应用.这里对目前最流行和最实用的用户画像技术进行讲解,并分析大数据分析的常用算法。 二.用户画像 1....用户画像,即用户信息标签化,就是企业通过收集与分析消费者社会属性、生活习惯、消费行为等主要信息的数据之后,完美地抽象出一个用户的商业全貌作是企业应用大数据技术的基本方式。...可参考 三.常用算法 大数据有许多数据挖掘的经典算法,涉及到了决策分类,聚类,回归、链接挖掘,关联挖掘,模式挖掘等等方面。

    1.8K20

    浅谈数据挖掘与数据分析?

    浅谈数据分析与数据挖掘?   数据分析和数据挖掘都可以做为“玩数据”的方法论,两者有很多的共性,也有显著的差异。   ...数据挖掘工程师则要求要比较熟悉数据库技术、熟悉数据挖掘的各种算法,能够根据业务需求建立数据模型并将模型应用于实际,甚至需要对已有的模型和算法进行优化或者开发新的算法模型。...想要成为优秀的数据挖掘工程师,良好的数学、统计学、数据库、编程能力是必不可少的。   总之一句话来概括的话,数据分析师更关注于业务层面,数据挖掘工程师更关注于技术层面。...数据分析与数据挖掘的区别   数据分析可以分为广义的数据分析和狭义的数据分析,广义的数据分析就包括狭义的数据分析和数据挖掘,我们常说的数据分析就是指狭义的数据分析。...所以数据分析(狭义)与数据挖掘构成广义的数据分析。   来源:数据科学网公众号

    1.4K110

    Python数据分析与实战挖掘

    Scipy 包含最优化、线性代数、积分、插值、拟合、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程常用的计算 Matplotlib 提供二维绘图,也可以三维绘图,与Matlab...[3]判定系数r² 3、主要函数 主要是Pandas用于数据分析和Matplotlib用于数据可视化 《贵阳大数据分析师培训机构 》 Pandas主要统计特征函数 sum 总和(按列) mean 算数平均值...D中相邻n个数的计算特征 《贵州大数据培训机构 》 统计作图函数,基于Matplotlib Python主要统计作图函数 《贵阳大数据报名学习 》 plot 绘制线性二维图,折线图 pie 绘制饼图 hist...分类与预测 主要分类与预测算法 回归分析 确定预测值与其他变量关系。...将低维非线性可分转化为高维线性可分进行分析 常用插补方法 《 贵阳数据分析师》 均值/中位数/众数 根据属性值类型,取均值、中位数、众数进行插补 使用固定值 将缺失属性用常量替代 最近邻插补法 在记录中找到与缺失样本最接近的样本的该属性值进行插补

    3.7K60

    当大数据分析与云技术双剑合璧

    大数据的出现使业务智能真正地走入了21世纪。但事实上“大数据”词代表的并不是解决方案,而是一类问题。在这些PB数量级的数据中,隐藏着怎样的价值?我们从中能得什么,并且使之指导业务部署的方方面面。...云可作为大数据分析的使能器 Forrester定义大数据为“在大规模的经济性下,获取数据的技术和技能。”这里最关键的一个词是经济。...幸运的是随着数据量的不断增长,技术也在不断地进化,可帮助大部分企业利用这些数据。云技术,无论是公有云、私有云还是混合云,在让企业从大数据分析中提取潜在的ROI方面,都是不可或缺的一部分。...公有云和混合云技术可用在分析阶段,在数据集处理阶段可引入Hadoop或类似替代方案。...有了云计算技术,大数据的价值才能得到更好的转化。不得不说,对于在使数据转化为商用方面,云是一个相当完美的平台。

    82270

    用ChatGPT做数据分析与挖掘

    导读 导读:在现代数据分析中,Python凭借其强大的数据处理能力和丰富的库资源成为首选工具。ChatGPT,作为先进的自然语言处理模型,正逐步成为Python数据分析与挖掘的强大辅助工具。...传统数据分析 VS ChatGPT+数据分析 模式对比从对比可知,结合ChatGPT的交互式分析体验降低专业门槛,允许非专业认识以提问的形式探索数据,实时获取定制化的分析结果,增强了数据分析的灵活性和响应速度...ChatGPT辅助理论学习 ChatGPT辅助Python数据挖掘在理论学习方面具有显著优势。其强大的自然语言处理能力,使得复杂的数据挖掘概念、算法原理得以用简洁明了的语言阐述,降低了学习门槛。...在ChatGPT输入以下问题:作为数据挖掘专家,请用通俗易懂的语言给小白介绍线性回归原理,不要用Markdown,公式用LaTeX显示。...这个方程告诉我们,房价()与房子大小()之间存在一种线性关系。斜率表示这个关系的斜度,截距表示直线和轴的交点。那么,当我们有了这条直线后,如果有新的房子大小,我们就可以用这个方程来预测它的价格。

    20110

    大数据分析与机器学习:技术深度与实例解析【上进小菜猪大数据系列】

    大数据分析与机器学习已成为当今商业决策和科学研究中的关键组成部分。本文将深入探讨大数据技术的背景和原则,并结合实例介绍一些常见的大数据分析和机器学习技术。...随着互联网和计算能力的飞速发展,大数据成为了各行业面临的重要挑战和机遇。通过大数据分析,我们可以挖掘出隐藏在海量数据中的有价值信息,为企业决策提供有力支持。...机器学习作为大数据分析的重要工具,可以帮助我们从数据中学习模式、预测趋势和进行智能决策。下面我们将通过技术深度的介绍和代码实例的演示,带领读者深入了解大数据分析与机器学习的关键技术。...六、实时大数据处理与流式计算 除了离线的大数据分析,实时大数据处理和流式计算也成为了重要的技术领域。...结论: 本文介绍了大数据分析与机器学习的关键技术,包括数据处理与存储、特征提取与选择以及模型训练与评估。通过代码实例的演示,读者可以更加深入地理解和应用这些技术。

    48810

    探索数据宇宙:深入解析大数据分析与管理技术

    大数据分析与管理技术 关于大数据 2008年,英国著名学术杂志《Nature 》上推出了大数据的专刊。...美国政府更是在 2012 年发布了“大数据研究和发展倡议”(Big data research and development initiative),斥资2 亿多美元计划在科研、环境、生物医学等领域利用大数据分析管理技术取得新的突破...通过对大数据进行合理的分析,能够从中挖掘出很多有价值的信息,这些信息将有助于提高社会生产效率,提升人们生活质量,或者创造更大商业价值。...2.数据分析 数据分析是整个大数据处理流程中的核心环节,因为大数据所蕴含的价值需要通过数据分析得以实现。...传统的数据分析技术包括数据挖掘、机器学习、统计分析等,在用于处理大数据时可能需要进行必要的调整,因为这些技术在处理大数据时面临一些新的挑战,体现在以下几个方面: 大数据价值大(Value

    28710
    领券