首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Numpy入门之 多维数组

多维数组是用来描述多层嵌套的数据的一种模型,(如 图书馆的 楼,层,房间,书架,书架上的行和列),出于内存对齐的需要,它要求同一级的子数组要有相同的形状尺寸,还要求每个元素的数据类型相同。...(6维数组可以类比这样一个特殊的图书馆,它每栋楼都有相同的层数,每一层都有相同的房间数,每个房间都有相同数量的书架,每个书架都有相同的行数,书架上每一行只能放相同数量的书。)。...数组有多少层/维,就可以说有多少个轴。Numpy数组最外的那一层称为第0轴(楼),往内依次是第1轴(层),第2轴(房间),第3轴(书架),第4轴(行),第5轴(列)。...最常见的多维数组是 2 维数组,其第0轴称作行,第1轴称作列。...可以使用元组(tuple)作为数组的下标存取数组的元素: >>> a = np.arange(10).reshape(-1,1)#第1轴变为1列,第0轴自动调整 >>> a array([[0],

85540
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    NumPy之:ndarray多维数组操作

    简介 NumPy一个非常重要的作用就是可以进行多维数组的操作,多维数组对象也叫做ndarray。我们可以在ndarray的基础上进行一系列复杂的数学运算。...还可以从list中创建: data1 = [6, 7.5, 8, 0, 1] arr1 = np.array(data1) array([6. , 7.5, 8. , 0. , 1. ]) 从list中创建多维数组..., 0.3329]]) Fancy indexing Fancy indexing也叫做花式索引,它是指使用一个整数数组来进行索引。...然后使用一个整数数组来索引,那么将会以指定的顺序来选择行: arr[[4, 3, 0, 6]] array([[4., 4., 4., 4.], [3., 3., 3., 3.],...多维数组的轴转换可能比较复杂,大家多多理解。 还可以使用 swapaxes 来交换两个轴,上面的例子可以重写为: arr.swapaxes(0,1)

    78310

    【NumPy学习指南】day4 多维数组的切片和索引

    ndarray支持在多维数组上的切片操作。为了方便起见,我们可以用一个省略号(...)来 表示遍历剩下的维度。...你可能已经猜到,reshape函数的作用是改变数组的“形状”,也就是改变数组的维度,其参数为一个正整数元组,分别指定数组在每个维度上的大小。如果指定的维度和数组的元素数目不相吻合,函数将抛出异常。...,使用如下代码: >>>b[0,::-1,-1] array([11, 7, 3]) 在该数组切片中间隔地选定元素: >>>b[0,::2,-1] array([3, 11]) 如果在多维数组中执行翻转一维数组的命令...], [[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]]) 刚才做了些什么 我们用各种方法对一个NumPy...多维数组进行了切片操作。

    1.2K20

    Python NumPy多维数组形状重构

    NumPy 是 Python 中用于数值计算的核心库,其多维数组功能是数据科学和工程计算的基础。在实际工作中,我们经常需要根据需求对数组进行形状重构,例如调整维度、添加或删除轴等。...NumPy 提供了强大的数组重构工具,如 reshape、ravel、resize 等,可以灵活高效地处理数组形状。...多维数组的形状与属性 在 NumPy 中,数组的形状由一个元组表示,描述了数组在每个维度上的大小。例如,一个形状为 (3, 4) 的数组表示有 3 行 4 列。...resize:直接修改数组的形状。 ravel 和 flatten:将多维数组展平成一维。 reshape:灵活调整数组形状 reshape 方法用于创建一个新形状的数组,而不会改变原始数据。...6 7]] ravel 和 flatten:展开数组 将多维数组展平成一维数组是常见的操作,ravel 和 flatten 都能实现这一功能,但它们有一些区别: ravel 返回的是原数组的视图,修改会影响原数组

    9710

    【Python深度学习】用NumPy创建多维数组

    使用NumPy可以体验到在原生Python代码上从未体验过的运行速度。 那么NumPy到底有什么功能呢?其实NumPy的功能非常多,主要用于数组计算。...在这个程序中只涉及到numpy模块中的一个arange函数,该函数可以传入一个整数类型的参数n,函数返回值看着像一个列表,其实返回值类型是numpy.ndarray。这是NumPy中特有的数组类型。...# 导入numpy模块的arange函数 from numpy import arange def sum(n): # 对ndarray类型的数组进行2次方运算 a = arange(n) **...图1 数组运算 3. 创建多维数组 numpy模块的array函数可以生成多维数组。...from numpy import * # 创建一个一维的数组 a = arange(5) # 输出一维数组,运行结果:[0 1 2 3 4] print(a) # 输出数组每一维度的元素个数,运行结果

    1.7K20

    【实验楼-Python 科学计算】Numpy - 多维数组(上)

    创建 numpy 数组 初始化numpy数组有多种方式,比如说: 使用 Python 列表或元祖 使用 arange, linspace 等函数 从文件中读取数据 列表生成numpy数组 我们使用 numpy.array...模块提供的 ndarray 类型 type(v), type(M) => (numpy.ndarray'>,numpy.ndarray'>) v 与 M 数组的不同之处在于它们的维度...Numpy 数组是 静态类型 并且 齐次。 元素类型在数组创建的时候就已经确定了。 Numpy 数组节约内存。...使用 ndarray 的 dtype 属性我们能获得数组元素的类型: M.dtype=> dtype('int64') 当我们试图为一个 numpy 数组赋错误类型的值的时候会报错: M[0,0] =...1,2,3,4,5]) A[-1] # the last element in the array=> 5A[-3:] # the last three elements=> array([3, 4, 5]) 索引切片在多维数组的应用也是一样的

    1.5K20

    【NumPy 数组索引、裁切,数据类型】

    python之Numpy学习 NumPy 数组索引 访问数组元素 数组索引等同于访问数组元素。 您可以通过引用其索引号来访问数组元素。...NumPy 数组中的索引以 0 开头,这意味着第一个元素的索引为 0,第二个元素的索引为 1,以此类推。...from 2nd dim: ', arr[1, -1]) NumPy 数组裁切 裁切数组 python 中裁切的意思是将元素从一个给定的索引带到另一个给定的索引。...: 实例 从末尾开始的索引 3 到末尾开始的索引 1,对数组进行裁切: import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7]) print...( void ) 检查数组的数据类型 NumPy 数组对象有一个名为 dtype 的属性,该属性返回数组的数据类型: 实例 获取数组对象的数据类型: import numpy as np arr

    20310

    Python Numpy数组高级索引操作指南

    本文将详细介绍Numpy的高级索引技巧,帮助在数据分析中充分利用这些功能。 什么是高级索引? 在Numpy中,索引数组有两种基本方式:整数索引和切片索引。...二维数组的花式索引 花式索引同样适用于多维数组,允许我们选择指定行或列。...row_indices表示要提取的行,而col_indices表示要提取的列。 多维数组的花式索引 对于多维数组,花式索引可以在多个维度上同时使用。...通过使用布尔数组进行索引,可以快速提取出满足条件的元素。 二维数组的布尔索引 布尔索引同样适用于多维数组,用于根据条件筛选行或列。...即使对于非常大的数组,Numpy的高级索引操作依然能够保持很高的性能。 总结 Numpy的高级索引为处理复杂数组操作提供了极大的灵活性与效率。

    19610

    【实验楼-Python 科学计算】Numpy - 多维数组(下)

    操作 numpy 数组的常用函数 where 使用 where 函数能将索引掩码转换成索引位置: indices = where(mask) indices => (array([11, 12, 13,...为了有个感性地认识,让我们用 numpy 来处理斯德哥尔摩天气的数据。...我们能够通过在数组中使用索引,高级索引,和其它从数组提取数据的方法来对数据集的子集进行操作。...如果我们只是关注一个特定月份的平均温度,比如说2月份,那么我们可以创建一个索引掩码,只选取出我们需要的数据进行操作: unique(data[:,1]) # the month column takes...数组的维度可以在底层数据不用复制的情况下进行修改,所以 reshape 操作的速度非常快,即使是操作大数组。

    1.5K40

    DJL 之 Java 玩转多维数组,就像 NumPy 一样

    随着数据科学在生产中的应用逐步增加,使用 N维数组 灵活的表达数据变得愈发重要。我们可以将过去数据科学运算中的多维循环嵌套运算简化为简单几行。...由于进一步释放了计算并行能力,这几行简单的代码运算速度也会比传统多维循环快很多。 这种数学计算的包已经成为数据科学、图形学以及机器学习领域的标准。同时它的影响力还在不断的扩大到其他领域。...在 Python 的世界,调用 NDArray(N维数组)的标准包叫做 NumPy。但是如今在 Java 领域中,并没有与之同样标准的库。...import numpy as np 3.1 创建 NDArray ones 是一个创建全是1的N维数组操作....它复刻了大部分在 NumPy 中对于 NDArray 支持的 get/set 操作。只需要简单的放进去一个字符串表达式,开发者在 Java 中可以轻松玩转各种数组的操作。

    1.4K30

    多维数组的理解

    要清楚的理解多维数组,需要先理解指针的算术运算和数组名的含义。...2、多维数组名字的理解     对于数组名大家都知道可以理解为指针,可究竟这个指针指向的内容是什么呢?...理解上面的内容就可以对多维数组进行操作了,如定位到23这个元素,首先要先通过*(num+1)定位到{{21,22,23,24,25},{26,27,28,29,30},{31,32,33,34,35},...3、用数组名作为一维指针去操作多维数组     其实多维数组只是为了方便程序员编程,而设定的,在内存中多维数组就是一个一维数组,它是按照从左到右一个元素一个元素线性排列的,如上述num数组中的元素就是按照从...使用时需要先找到多维数组中第一个元素的地址,然后将其赋值给一维指针,如int *p=&num[0][0][0];或int *p=num[0][0]; #include using namespace

    2.3K100

    Python数据分析(5)-numpy数组索引

    numpy数组的索引遵循python中x[obj]模式,也就是通过下标来索引对应位置的元素。...在numpy数组索引中,以下问题需要主要: 1)对于单个元素索引,索引从0开始,也就是x[0]是第一个元素,x[n-1]对应第n个元素,最后一个元素为x[d-1],d为该维度的大小。...高级索引有两种方式:整数索引和bool值索引 2.1 bool索引 bool索引的本质就相当于mask,索引数组的维度大小与原数组一样,返回索引数组中为Ture的位置对应的值,并压平为一维数组。...2.2 整数索引 整数索引是说可以用数组去索引,规则符合numpy的boadcast规则,也就是每一维度的索引数组会相互组合。...2.3 合理使用ix_() 函数 ix_函数是用来扩充维度,因为在整数索引中要保证每个维度的索引数组的维度一样,则可以直接用ix_函数来构建索引函数 import numpy as np a = np.arange

    2.3K11

    NumPy Cookbook 带注释源码 二、NumPy 高级索引和数组概念

    花式索引 # 这个代码通过将数组对角线上的元素设为 0 ,来展示花式索引 # 花式索引就是使用数组作为索引来索引另一个数组 # 来源:NumPy Cookbook 2e Ch2.6 import scipy.misc...height = lena.shape[0] width = lena.shape[1] # 使用花式索引将对角线上的元素设为 0 # x 为 0 ~ width - 1 的数组 # y 为 0...将位置列表用于索引 # 这个代码的目的就是把 Lena 图像弄花 # 来源:NumPy Cookbook 2e Ch2.7 import scipy.misc import matplotlib.pyplot...# ix_ 函数将 yindices 转置,xindices 不变 # 结果是一个 height x 1 的数组和一个 1 x width 的数组 # 用于索引时,都会扩展为 height x width...分离数独的九宫格 # 来源:NumPy Cookbook 2e Ch2.9 import numpy as np # 数独是个 9x9 的二维数组 # 包含 9 个 3x3 的九宫格 sudoku

    78540
    领券