本文将以具体实例形式,介绍线上判定一元函数的单调性,计算单调性区间的分界点、极值点与拐点,一元函数的极值与最值;判定多元函数的极值点、鞍点以及无条件极值、条件极值与最值的计算
哦……可惜数学实际上没那么多想象的浪漫,它的极致应如潜入深海之渊,耐得住寂寞,踏实严谨。
审稿人:阿泽,Datawhale成员,复旦大学计算机硕士,目前在携程担任高级算法工程师。
提到人工智能算法,人工神经网络(ANN)是一个绕不过去的话题。但是对于新手,往往容易被ANN中一堆复杂的概念公式搞得头大,最后只能做到感性的认识,而无法深入的理解。正好最近笔者本人也在经历这个痛苦的过程,本着真理越辩越明的态度,索性坐下来认真的把这些头大的问题梳理一番,试试看能不能搞清楚ANN背后的数学原理。
最优化问题在机器学习中有非常重要的地位,很多机器学习算法最后都归结为求解最优化问题。在各种最优化算法中,梯度下降法是最简单、最常见的一种,在深度学习的训练中被广为使用。在本文中,SIGAI将为大家系统的讲述梯度下降法的原理和实现细节问题。
解决该类问题的思路也很简单,直接沿用我们在 一元函数 中的手段:通过 驻点 找 极值点
现在是 2022-1-1,我简单的点评一下今年各位老师的出卷,如果读者想刷这一年的,可以作为参考
步骤(1).函数的定义域 (2).函数的驻点 (3)判别法,(高阶导数)类似于韦达定理。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sinat_35512245/article/details/53232808
Tom Mitchell将机器学习任务定义为任务Task、训练过程Training Experience和模型性能Performance三个部分。 以分单引擎为例,我们可以将提高分单效率这个机器学习任务抽象地描述为:
线性代数是通过一系列的手段去”折腾“方程组,提取其系统信息; 而运筹学要解决一般视角下的最优化问题,寻求最好的解决办法,也就是寻找一般函数的最大最小值问题。 关于寻求最优解我们要记住两步: 第一步我们要数学建模,第二步求解这个数学模型
梯度下降法(Gradient descent)是一个一阶最优化算法,通常也称为最速下降法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程则被称为梯度上升法。 本文将从最优化问题谈起,回顾导数与梯度的概念,引出梯度下降的数据推导;概括三种梯度下降方法的优缺点,并用Python实现梯度下降(附源码)。 1 最优化问题 最优化问题是求解函数极值的问题,包括极大值和
线性回归作为监督学习中经典的回归模型之一,是初学者入门非常好的开始。宏观上考虑理解性的概念,我想我们在初中可能就接触过,y=ax,x为自变量,y为因变量,a为系数也是斜率。如果我们知道了a系数,那么给我一个x,我就能得到一个y,由此可以很好地为未知的x值预测相应的y值。这很符合我们正常逻辑,不难理解。那统计学中的线性回归是如何解释的呢?
数学基础知识对机器学习还有深度学习的知识点理解尤为重要,本节主要讲解极限等相关知识。
方法:定义一个条件概率,如p(Y|X)相当于用模型来捕获输入X和输出Y之间的关系,如
本文列出的数学知识点已经写成了《机器学习的数学教程》,以后有机会的话可能会出版,以帮助大家学习。
在机器学习与深度学习中需要大量使用数学知识,这是给很多初学带来困难的主要原因之一。此前SIGAI的公众号已经写过“学好机器学习需要哪些数学知识”的文章,由于时间仓促,还不够完整。今天重新整理了机器学习与深度学习中的主要知识点,做到精准覆盖,内容最小化,以减轻学习的负担同时又保证学习的效果。这些知识点是笔者长期摸索总结出来的,相信弄懂了这些数学知识,数学将不再成为你学好机器学习和深度学习的障碍。
对于几乎所有机器学习算法,无论是有监督学习、无监督学习,还是强化学习,最后一般都归结为求解最优化问题。因此,最优化方法在机器学习算法的推导与实现中占据中心地位。在这篇文章中,小编将对机器学习中所使用的优化算法做一个全面的总结,并理清它们直接的脉络关系,帮你从全局的高度来理解这一部分知识。
我们在前面说过机器学习中的损失函数,其实机器学习中的每一个模型都是在求损失函数的最优解,即让损失达到最小值/极小值,求解方式有多种,本篇讲讲其中两个基本的优化方法:
牛顿法是数值优化算法中的大家族,她和她的改进型在很多实际问题中得到了应用。在机器学习中,牛顿法是和梯度下降法地位相当的的主要优化算法。在本文中,SIGAI将为大家深入浅出的系统讲述牛顿法的原理与应用。
原文地址:https://www.cnblogs.com/maybe2030/p/4946256.html
在之前的文章当中,我们一起推导了线性回归的公式,今天我们继续来学习上次没有结束的内容。
█ 本文译自算法R&D,内核开发工程师 Devendra Kapadia 于2017年11月9日的博客文章: Limits without Limits in Version 11.2. 这是一个序
在数学最优问题中,拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的多元函数的极值的方法。这种方法将一个有n 个变量与k 个约束条件的最优化问题转换为一个有n + k个变量的方程组的极值问题,其变量不受任何约束。本文介绍拉格朗日乘数法(Lagrange multiplier)。 概述 我们擅长解决的是无约束极值求解问题,这类问题仅需对所有变量求偏导,使得所有偏导数为0,即可找到所有极值点和鞍点。我们解决带约束条件的问题时便会尝试将其转化为无约束优化问题
本文是机器学习和深度学习习题集的答案-1,免费提供给大家,也是《机器学习-原理、算法与应用》一书的配套产品。此习题集可用于高校的机器学习与深度学习教学,以及在职人员面试准备时使用。
这是一个全新的系列,也是厦门大学数学科学学院第一年开设的课程。希望这一个全新的系列能够让大家(当然也包括我自己……)从一个系统的角度来看优化这一个主题。同样,这也是专栏内目前的第一个真正与我的主修专业——计算数学相关的系列笔记。
之前我们聊了线性回归的公式推导,最后关于参数求解的地方卖了个关子。想要针对函数求极值处的参数值,其实我们有很多方法可以用,除了简单粗暴的公式推导之外,还有牛顿法、拟牛顿法、梯度下降法等许多方法。今天我们来聊聊其中比较简单的梯度下降法。
对于几乎所有机器学习算法,无论是有监督学习、无监督学习,还是强化学习,最后一般都归结为求解最优化问题。因此,最优化方法在机器学习算法的推导与实现中占据中心地位。在这篇文章中,SIGAI将对机器学习中所使用的优化算法做一个全面的总结,并理清它们直接的脉络关系,帮你从全局的高度来理解这一部分知识。
回顾数学的发展史,每次数形结合都能够诞生出新的数学思想,将整个数学向前推进一大步:
大家好,又见面了,我是你们的朋友全栈君。 matlab中的函数fmincon可用于求可以求取多元函数的极值,其约束包括五种:1、线性不等式
话不多说,直接进入主题。在我看来,不管是梯度下降法还是牛顿法,它们都可以归结为一个式子,即
在各种场景可能都会遇到需要求解多元二次函数极值的问题,本系列文章介绍相关的计算方法,核心内容为共轭梯度法。 本文介绍问题定义。 问题定义 多元二次多项式,维度为n,那么可以用以下公式描述该函数: f({x_1},{x_2},{x_3},…,{x_n}) = {a_{1,1}}x_1^2 + {a_{1,2}}{x_1}{x_2} + {a_{1,3}}{x_1}{x_3} + \cdots + {a_{1,n}}{x_1}{x_n} + {a_{2,1}}x_2{x_1} + {a_{2,2}}
点的函数值,导数值,二阶导数值得到的抛物线,我们求这条抛物线的梯度为 0(即最小值)的点
本系列是《玩转机器学习教程》一个整理的视频笔记。本小节主要介绍解决多元线性回归的另一种方法梯度下降算法,梯度下降算法也是求解机器学习算法比较通用的方法。
今天延续昨天更新的题目,感觉还可以,主要讲两种极值,都是基本问题,关键在于套路。希望大家好好体会,有问题留言。
“ 随机过程,实分析。机器学习往深里做肯定需要用这种,高级的数学语言去对问题进行描述。我本人对随机和实分析,其实目前也还只是略懂,很难说,真正的彻底掌握这两门十分强大的数学工具。”
中国教科书中通常首先学习导数,例如中学时期的切线方程,函数单调性,零值点和极值点个数等等,而直到大学时期才引入微分的概念,导致大多数人通常并不了解微分和导数之间的关系。
说到逻辑回归(Logistic Regression),其实他解决的并不是回归问题(Regression),而是分类问题(Classification)。分类问题都明白了,他和一般的回归问题的差别其实也就在于一个值域是连续的,而另一个值域是离散的,
步骤4. 对于每一个驻点,计算判别式,如果,则该驻点是极值点,当为极小值, 为极大值;如果,需进一步判断此驻点是否为极值点; 如果则该驻点不是极值点.
上次了解了核函数与损失函数之后,支持向量机的理论已经基本完成,今天将谈论一种数学优化技术------最小二乘法(Least Squares, LS)。现在引用一下《正态分布的前世今生》里的内容稍微简单阐述下。我们口头中经常说:一般来说,平均来说。如平均来说,不吸烟的健康优于吸烟者,之所以要加“平均”二字,是因为凡事皆有例外,总存在某个特别的人他吸烟但由于经常锻炼所以他的健康状况可能会优于他身边不吸烟的朋友。而最小二乘法的一个最简单的例子便是算术平均。 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最
首先看一个二元函数(再复杂一点的函数就很难直观地呈现出来)的三维图像和对应的等高线,其中函数表达式为
上一篇 5 TF轻松搞定线性回归,我们知道了模型参数训练的方向是由梯度下降算法指导的,并使用TF的封装tf.train.GradientDescentOptimizer(0.01)(学习率为0.01)
实际中有很多问题是一个因变量与多个自变量成线性相关,我们可以用一个多元线性回归方程来表示。
「总结自经典机器学习教材《Pattern Recognition and Machine Learning》以及김동국教授的人工神经网络纯理论课程。在此感谢作者及教授的辛苦教学。本篇内容很多东西没有很明确地说明,仅限学习使用」
凸优化(convex optimization)是最优化问题中非常重要的一类,也是被研究的很透彻的一类。对于机器学习来说,如果要优化的问题被证明是凸优化问题,则说明此问题可以被比较好的解决。在本文中,SIGAI将为大家深入浅出的介绍凸优化的概念以及在机器学习中的应用。
领取专属 10元无门槛券
手把手带您无忧上云