对上述原始数据,按照DEPARTMENT_ID(员工id)分组统计SALARY(薪水)的平均值。
Excel自动筛选在工作中被经常使用,但掌握高级筛选的同学却很少,甚至都不知道高级筛选高级到哪儿了。今天兰色还原一个高大尚的高级筛选功能。 一、高级筛选哪里“高级”了? 可以把结果复制到其他区域或表格中。 可以完成多列联动筛选,比如筛选B列大于A列的数据 可以筛选非重复的数据,重复的只保留一个 可以用函数完成非常复杂条件的筛选 以上都是自动筛选无法完成的,够高级了吧:D 二、如何使用高级筛选? 打开“数据”选项卡,可以看到有“高级"命令,它就是高级筛选的入口。不过想真正使用,还需要了解“条件区域"的概念
本周学习的数据库,有一种明显的感觉,语法简单,基本上不会有大段大段的代码出现,简简单单的几行代码就可以完成我们需要实现的任务,或许是因为我们的任务比较初级吧!嘻嘻!
有分析意义的数据一般是表结构,即分为行与列,列定义了数据含义,行则构成了数据明细。
在平常的工作中,后端开发或者数据库管理员应该是接触到SQL编写场景最频繁的用户,虽然,我们能够正常的通过需求完成SQL语句的编写,但是还是存在许多的小伙伴对SQL的执行顺序不了解的。其实,了解SQL的执行顺序对我们编写SQL、理解SQL、优化SQL都有很大的帮助,所以在在开始讲解Group by的使用之前,先简单了解下SQL执行的一个顺序。
在Hive中,有时我们需要对表中某个字段的长度进行判断,以便进行数据清洗、筛选或其他操作。本文将介绍如何在Hive中判断某个字段的长度,并给出示例代码。
文章目录 进阶3:排序查询 特点: 1、按单个字段排序 案例1:查询员工信息,要求工资从高到低排序 2、添加筛选条件再排序 案例1:查询部门编号>=90的员工信息,并按员工编号降序 案例2:查询部门编号>=90的员工信息,按入职时间的先后进行排序 3、按表达式排序 案例1:按年薪的高低显示员工的信息和年薪 4、按别名排序 案例1:查询员工信息 按年薪升序 5、按函数(length)排序 案例1:查询员工名,并且按名字的长度降序 6、按多个字段排序 案例1:查询员工信息,要求先按工资降序,再按e
先大致看一下,后面都会讲,distinct用来去重,from 指明表名,where语句则用来控制查询条件,order by则用来对结果进行升序/降序排序,limit则用来分页。
---单表的查询学习 --查询表的所有数据 select * from 表名;*代表所有 select * from emp; --查询表中指定字段的值 select 字段名1,字段名2,...from表名 select empno from emp; select empno,ename from emp; --给查询结果中的字段使用别名 --在字段名后使用关键字 字段名 as "别名" --作用:方便查看查询结果 --注意:as关键字可以省略不写,别名中没有特殊字符双引号也可以省略不写。 select empno 员工编号,ename"员工 姓名",job as 工作,mgr as "领导编号" from emp; --连接符:select 字段名||'字符'||字段名||..... from 表名 --||为sql语句的字符链接符,使用在select和from之间 --字符链接格式为 字段名||'字符'||字段名 --注意:一个拼接好的连接在结果集中是作为一个新的字段显示,可以使用别名优化字段显示。 select empno||'的姓名是'||ename as"信息",job||'哈哈'||mgr from emp; --去除重复 select distinct 字段名,字段名,...fromn 表名 ---注意:去除重复的规则是按照行进行去除的,多行数据完全相同取其一 select distinct job ,mgr from emp; --排序 --单字段排序 --select * from 表名 order by 字段名 asc 升序排序 asc可以省略不写 --select * from 表名 order by 字段名 desc 降序序排序 --多字段排序 --select * from emp order by 字段名1,字段名2... --先按照字段1排序,如果字段1的值相同,则按照字段2排序,.... select * from emp order by empno desc--单字段排序 降序 select empno,ename,job from emp order by ename asc--单字段排序 升序 select * from emp order by empno,ename--多字段排序 --字段的逻辑运算 --select关键字和from关键字之间的字段可以直接进行四则运算 --字段与字段之间也可以直接进行运算 --注意:字段值为数值类型 select * from emp select empno,ename,job,sal*2+1000,sal+comm from emp ----------------------------------------------------------------- --使用where子句查询筛选 --select 字段名,字段名,...from表名 where 筛选条件 --单筛选条件 --使用运算符进行筛选 =,>,>=,<,<=,<> 单个条件中 --注意:如果条件中的值为字符,必须使用单引号括起来 --查询所有的员工的工资信息 select empno,ename,sal+comm as 薪资 from emp --查询SMITH的个人信息 select * from emp where ename='SMITH' --查询SMITH的薪资信息,逻辑运算符= select empno,ename,sal,sal+comm from emp where ename='SMITH' --查询工资大于1000的员工信息,逻辑符> select * from emp where sal>'2000' --查询工资不等于3000的员工信息 select * from emp where sal<>3000 order by sal --练习: --查看工资等于1250的员工信息
语法: select 查询列表 ④ from 表名——————————① where 分组前条件—— ② group by 分组的字段③ having 分组后条件 ⑤ order by 排序列表 ⑥ 特点: 1、查询列表往往是:分组函数和分组后的字段 换句话说,和分组函数一同查询的字段,一般就是分组后的字段 2、分组查询的筛选有两种:分组前筛选和分组后筛选 连接关键字 位置 筛选的结果集 分组前筛选 where group by前面 原始表 分组后筛选 having group by后面 分组后的查询结果(虚拟表) 结论:分组函数做条件 肯定是 分组后筛选条件!!! 3、分组查询可以通过单个字段,也可以通过多个字段,中间用逗号隔开
这看上去是个幼稚的问题,但我们还是一步步思考一下。数据以行为粒度存储,最简单的 SQL 语句是 select * from test,拿到的是整个二维表明细,但仅做到这一点远远不够,出于以下两个目的,需要 SQL 提供聚合函数:
作者:刘金玉 数据库中对数据进行查询必须使用Select关键词。本期教程跟老刘一起对数据库查询的几种情况进行学习。 第一种:单表查询 语法结构: select 字段名称 from 表名称 或者如果我们要查询表的所以字段,就直接使用select * from 表名 这个语法即可,这里的星号*表示所有字段名称。 案例:查询用户表user的所有信息 Select * from user 第二种:带有条件筛选的单表查询 where 这个语法只是在select查询语句的最好加上一条where语句进行数据的进一步过滤。 语法结构:where 字段1 表达式符号 相应条件值 举例:查询姓名为刘金玉的用户信息 Select * from user where trueName='刘金玉' 这里要注意的是“刘金玉”为一个字符串,因此要加上单引号,在数据库查询语句中,我们之前强调过,如果字段类型为字符串类型(例如char、varchar、nchar、nvarchar、text等)就要在查询和录入的时候加上相应的单引号‘’ 第三种:多表查询 join 我们很多时候往往要多个表的数据举行查询,因为根据关系型数据库设计的特点,我们需要的各个字段的数据往往分布于各个不同的数据表内。虽然在数据库中我们也可以采用where语句进行关键表的字段,但是这样做有很多弊端:一是条件语句不清晰,二是查询效率降低。因此,我们引出了join这个关键词。 Join有三种类型: left join 左连接 (默认的join就是left join) right join 右连接 inner join 内连接 语法结构: Select * from 表1 left/right/inner join 表2 on 表1.字段=表2.字段 举例:关联用户表和新闻表,关联字段为userid Select * from user left join news on user.userid= news. userid 根据这样说表关联,就可以显示文章的作者信息啦!当然,我们也可以采用给表取别名的方式关联。 Select * from user a left join news b on a.userid= b. userid 在使用join关键词进行关联的时候,一定要注意的是主表是哪个,这个跟现实结果记录数有关系。最好结合老刘的《零基础数据库教程》视频学习,注意观察一下不同的使用,得到的不同表关联结果。以下简单说明一下: A left join B 就是A为主表 A right join B 就是B为主表 A inner join B 就是取两张表的公共部分 副表在这里只是根据关键词对主表进行匹配,可能会被多次匹配,这要看数据表设计时候的表关系。 第四种:过滤相同列数据 distinct 如果我们得到的查询结果中有相同的数据行,我们可以通过distinct关键词进行过滤。 语法结构:select distinct 字段 from 表 没错,只需要在查询select关键词后加上distinct关键词即可。 举例:查询用户表一共有哪些用户昵称。 Select distinct nickname from user 第五种:数据排序order by 我们很多时候都是要将查询后的数据进行排序的,按照我们查询的指定字段为主关键词和次要关键词进行排序,这个时候,我们需要使用order by这个重要关键词。这个关键词往往用在查询语句的最后。 Order by 往往结合asc和desc这两个关键词,其中asc表示升序,desc表示降序。 语法结构: Select 字段 from 表 『where语句』 order by 字段1 asc/desc, 字段2 asc/desc... 使用案例:查询用户表所有信息,并按照用户编号进行升序排序。 Select * from user order by userid asc 其实在这个语句中,我们也可以省略asc关键词,因为order by 默认是以升序作为排序规则的。所以这个语句,我们也可以写成: Select * from user order by userid 第六种:数据记录显示limit 我们很多使用数据库的人员中,很多人都是做软件来发的,因此limit这个关键词就非常实用了,因为我们可以结合这个关键词,为我们的软件查询出来的数据记录结果做一个分页功能。limit这个关键词往往用在查询语句的最后。 语法结构: Select 字段 from 表 [where语句] [order by语句] [limit语句] 举例:获取用户表的前十条记录 Select * from user limit 10 获取用户表的第11~20条记录 Select * from user limit 10,20 第七种:聚合函数 sum count等
在我们日常使用数据库的时候,肯定避免不了对数据库的优化。那么对数据库的优化又少了不索引的知识。
2、DBMS:数据库管理系统,又称为数据库软件或数据库产品,用于创建或管理 DB 3、SQL:结构化查询语言,用于和数据库通信的语言,不是某个数据库软件特有的,而是几乎所有的主流数据库软件通用的语言
3、SQL:结构化查询语言,用于和数据库通信的语言,不是某个数据库软件特有的,而是几乎所有的主流数据库软件通用的语言
本节中的内容来自对uniCloud官方文档的重新梳理,为了让本课程的学习曲线更加平缓,仅保留我认为对本课程有用的部分。
数据分组是对相同类别的数据进行汇总,而数据透视表是通过对行或列的不同组合对数据进行汇总,所使用的汇总方法有求和、计数、平均值、标准差等,本文使用SQL对数据进行数据分组和数据透视,下面一起来学习。
我们在进行数据查询的时候往往难免会出现一些重复的数据,有时候我们不需要用到这些重复的数据,需要将这些重复的数据进行筛除,这个时候,我们可以使用distinct关键字
1、ElasticSearch为了实现并发访问,每次实行更新、删除、添加之后都会为版本号自增1。
进阶3:排序查询 以下面如图数据库为例编写排序查询案例 语法: select 查询列表 from 表名 【where 筛选条件】 order by 排序的字段|表达式|函数|别名 【asc|desc】; order by 特点: 1、asc代表的是升序,可以省略 desc代表的是降序 2、order by子句可以支持 单个字段、别名、表达式、函数、多个字段 3、order by子句在查询语句的最后面,除了limit子句 1、按单个字段排序 案例1:查询员工信息,要求工资从高到低排序 SEL
【玩转 GPU】AI绘画、AI文本、AI翻译、GPU点亮AI想象空间-腾讯云开发者社区-腾讯云 (tencent.com)
设值主键是为了确定唯一性,当一个字段无法确定唯一性的时候,就需要采用联合主键的方式。(多个字段来定义一个主键)
–如果要用到group by 一般用到的就是“每这个字” 例如说明现在有一个这样的表:每个部门有多少人 就要用到分组的技术
本文介绍的是如何在pandas进行数据的筛选和查看。因为pandas中有各种花样来进行数据筛选,本文先介绍比较基础的一部分。
不管是mysql,还是pandas,都是处理像excel那样的二维表格数据的。对于一个二维表,每一行都可以看作是一条记录,每一列都可以看作是字段。
聚合管道是MongoDB中用于数据聚合和处理的强大工具。它允许开发者通过一系列有序的阶段(Stages)对数据进行筛选、转换、分组和计算,从而生成符合需求的聚合结果。每个阶段都定义了一种操作,数据在每个阶段经过处理后,传递给下一个阶段,最终得到所需的聚合结果。
DQL查询语言 DQL基础查询语句–SELECT # DQL基础查询语句 /* 语法: SELECT 查询列表 FROM 表名; FROM可省 特点: 1. 查询列表可以是:表中的字段,常量,表达式,函数 2. 查询的结果是一个虚拟表格 */ # 选中指定库 USE myemployees; # 查询表中的单个字段 SELECT last_name FROM employees; # 查询表中的多个字段,中间用逗号隔开,对顺序无要求 SELECT last_name,first_name,e
Management Portal SQL界面的左侧允许查看模式(或匹配筛选器模式的多个模式)的内容
1.新增数据 INSERT [INTO] table_name [(column [, column] ...)] VALUES (value_list) [, (value_list)] ... value_list: value, [, value] ... 用例:创建一张学生表 -- 创建一张学生表 DROP TABLE IF EXISTS student; CREATE TABLE student ( id INT, sn INT comment '学号',
无论是哪种数据库的实现方式,最终都是通过按逗号分割字符串列,并转为数组或集合类似的形式,再判断单项参数是否在这个集合之中,最后使用AND或OR组合实现筛选逻辑。
语法:select 段落 from 表明 where binary 字段....................................
DQL续 分组查询 LIMIT 语句顺序 分组查询 什么是分组查询 将查询结果按照1个或多个字段进行分组,字段值相同的为一组 SELECT sex from stduent GROUP BY sex;
数据透视表是数据分析工作中经常会用到的一种工具。Excel本身具有强大的透视表功能,Python中pandas也有透视表的实现。本文使用两个工具对同一数据源进行相同的处理,旨在通过对比的方式,帮助读者加深对数据透视表的理解。
file 为 awk 要读取的文件,可以是一个或多个文件。如果不指定文件,则从标准输入中读取
大家好!我是黄啊码,上节课我们将了DISTINCT、 FROM 、 GROUP BY、 HAVING 、 ORDER BY 这些筛选数据的技能,是不是总感觉少了些啥?
Grafana 7 在配置表的时候出现按时间取值显示,表格中无需展示时间轴采集的数据情况,只需显示采集数据的最小值,最大值,当前值。
根据D3单元格的值,到“图书定价!$A$3:图书定价!$B$19”范围内进行匹配,根据精确匹配到的行,最终显示第二列的值。
向刚才做的这两个操作(插入一个没有部门的员工和删除一个带有员工的部门),这种情况都是不应该发生的。
常用的语句关键字有:SELECT、FROM、WHERE、ORDER BY、HAVING、ASC|DESC
前言 数据的世界正在发生急剧变化,任何人都应该访问自己需要的数据,并具备获取任何数据的洞察力,而tableau正是帮我们洞察数据的好帮手。 Tableau作为BI tool leader ( 2016 Gartner BI chart), 它不仅是一款可视化软件,还具备不可忽略的强大的Data connection, collaboration, security management, multi-platform功能性: Data connection:Tableau Desktop可直接连接S
Terms Set查询是Elasticsearch中一种强大的查询类型,主要用于处理多值字段中的文档匹配。
在开发中遇到一个业务诉求,需要在千万量级的底池数据中筛选出不超过 10W 的数据,并根据配置的权重规则进行排序、打散(如同一个类目下的商品数据不能连续出现 3 次)。下面对该业务诉求的实现,设计思路和方案优化进行介绍。
领取专属 10元无门槛券
手把手带您无忧上云