首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

复制pandas dataframe中的每一行,并根据列表更改某些列的值

可以通过以下步骤实现:

  1. 首先,使用copy()方法复制原始的dataframe,创建一个新的dataframe对象,确保不会修改原始数据。
代码语言:txt
复制
new_df = original_df.copy()
  1. 接下来,使用iterrows()方法遍历每一行,并根据列表更改某些列的值。
代码语言:txt
复制
for index, row in new_df.iterrows():
    # 根据需要更改的列和对应的新值,使用at或者loc方法进行修改
    new_df.at[index, 'column1'] = new_value1
    new_df.at[index, 'column2'] = new_value2

在上述代码中,index表示当前行的索引,row表示当前行的数据。通过at方法或者loc方法,可以根据列名和索引修改对应的值。

  1. 最后,得到修改后的新dataframe。

完整的代码示例:

代码语言:txt
复制
import pandas as pd

# 复制原始dataframe
new_df = original_df.copy()

# 遍历每一行并修改某些列的值
for index, row in new_df.iterrows():
    new_df.at[index, 'column1'] = new_value1
    new_df.at[index, 'column2'] = new_value2

# 打印修改后的新dataframe
print(new_df)

这样,你就可以复制pandas dataframe中的每一行,并根据列表更改某些列的值了。

关于pandas dataframe的更多信息,你可以参考腾讯云的产品文档:腾讯云·Pandas DataFrame

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

在 Python ,通过列表字典创建 DataFrame 时,若字典 key 顺序不一样以及部分字典缺失某些键,pandas 将如何处理?

当通过列表字典来创建 DataFrame 时,每个字典通常代表一行数据,字典键(key)对应列名,而(value)对应该行该数据。如果每个字典中键顺序不同,pandas 将如何处理呢?...顺序:在创建 DataFrame 时,pandas 会检查所有字典中出现键,根据这些键首次出现顺序来确定顺序。...缺失处理:如果某些字典缺少某些键,则相应地,在结果 DataFrame 该位置将被填充为 NaN(Not a Number),表示缺失。...下面是对一行代码解释: import pandas as pd:这行代码导入了 pandas 库,并将其重命名为 pd。...在个别字典缺少某些键对应,在生成 DataFrame 该位置被填补为 NaN。

11600

如何用 Python 执行常见 Excel 和 SQL 任务

每个括号内列表都代表了我们 dataframe 一行都以 key 表示:我们正在处理一个国家排名,人均 GDP(以美元表示)及其名称(用「国家」)。...使用一行代码,我们已经将这些数据分配保存到 Pandas dataframe - 事实证明是这种情况,字典是要转换为 dataframe 完美数据格式。 ?...请注意,Python 索引从0开始,而不是1,这样,如果要调用 dataframe 第一个,则使用0而不是1!你可以通过在圆括号内添加你选择数字来更改显示行数。试试看!...我们将要重命名某些,在 Excel ,可以通过单击列名称键入新名称,在SQL,你可以执行 ALTER TABLE 语句或使用 SQL Server sp_rename。...使用相同逻辑,我们可以计算各种 -- 完整列表位于左侧菜单栏下计算/描述性统计部分 Pandas 文档。

10.8K60
  • 用Python执行SQL、Excel常见任务?10个方法全搞定!

    每个括号内列表都代表了我们 dataframe 一行都以 key 表示:我们正在处理一个国家排名,人均 GDP(以美元表示)及其名称(用「国家」)。...使用一行代码,我们已经将这些数据分配保存到 Pandas dataframe —— 事实证明是这种情况,字典是要转换为 dataframe 完美数据格式。 ?...请注意,Python 索引从0开始,而不是1,这样,如果要调用 dataframe 第一个,则使用0而不是1!你可以通过在圆括号内添加你选择数字来更改显示行数。试试看!...我们将要重命名某些,在 Excel ,可以通过单击列名称键入新名称,在SQL,你可以执行 ALTER TABLE 语句或使用 SQL Server sp_rename。...使用相同逻辑,我们可以计算各种 — 完整列表位于左侧菜单栏下计算/描述性统计部分 Pandas 文档。

    8.3K20

    30 个小例子帮你快速掌握Pandas

    inplace参数设置为True以保存更改。我们删除了4,因此列数从14减少到10。 2.读取时选择特定 我们只打算读取csv文件某些。读取时,列表将传递给usecols参数。...通过将isna与sum函数一起使用,我们可以看到缺失数量。 df.isna().sum() ? 6.使用loc和iloc添加缺失 我正在做这个例子来练习loc和iloc。...例如,thresh = 5表示一行必须具有至少5个不可丢失非丢失。缺失小于或等于4行将被删除。 DataFrame现在没有任何缺失。...第一个参数是位置索引,第二个参数是名称,第三个参数是。 19.where函数 它用于根据条件替换行或。默认替换是NaN,但我们也可以指定要替换。...method参数指定如何处理具有相同行。first表示根据它们在数组(即顺序对其进行排名。 21.唯一数量 使用分类变量时,它很方便。我们可能需要检查唯一类别的数量。

    10.7K10

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    Pandas ,您需要更多地考虑控制 DataFrame 显示方式。 默认情况下,pandas 会截断大型 DataFrame 输出以显示第一行和最后一行。...If/then逻辑 假设我们想要根据 total_bill 是小于还是大于 10 美元,来创建一个具有低和高。 在Excel电子表格,可以使用条件公式进行逻辑比较。...选择 在Excel电子表格,您可以通过以下方式选择所需: 隐藏; 删除; 引用从一个工作表到另一个工作表范围; 由于Excel电子表格通常在标题行命名,因此重命名列只需更改第一个单元格文本即可...按排序 Excel电子表格排序,是通过排序对话框完成pandas 有一个 DataFrame.sort_values() 方法,它需要一个列表来排序。...数据透视表 电子表格数据透视表可以通过重塑和数据透视表在 Pandas 复制。再次使用提示数据集,让我们根据聚会规模和服务器性别找到平均小费。

    19.5K20

    整理了 25 个 Pandas 实用技巧,拿走不谢!

    更改列名 让我们来看一下刚才我们创建示例DataFrame: ? 我更喜欢在选取pandas时候使用点(.),但是这对那么列名中含有空格不会生效。让我们来修复这个问题。...从剪贴板创建DataFrame 假设你将一些数据储存在Excel或者Google Sheet,你又想要尽快地将他们读取至DataFrame。 你需要选择这些数据复制至剪贴板。...让我们再复制另外一个数据至剪贴板: ? 神奇是,pandas已经将第一作为索引了: ? 需要注意是,如果你想要你工作在未来可复制,那么read_clipboard()并不值得推荐。...类似地,你可以通过mean()和isna()函数找出缺失百分比。 ? 如果你想要舍弃那些包含了缺失,你可以使用dropna()函数: ?...你可以看到,每个订单总价格在一行显示出来了。 这样我们就能方便地甲酸每个订单价格占该订单总价格百分比: ? 20. 选取行和切片 让我们看一眼另一个数据集: ?

    3.2K10

    干货:手把手教你用Python读写CSV、JSON、Excel及解析HTML

    一行作为文本读入,你需要将文本转为一个整数——计算机可以将其作为数字理解(并处理)数据结构,而非文本。 当数据只有数字时一切安好。...进而使用.rows迭代器,遍历工作表一行,将所有单元格数据加入data列表: print ( [item[labels.index('price')] for item in data[0:10...使用DataFrame对象.apply(...)方法遍历内部一行。第一个参数指定了要应用到每行记录上方法。axis参数默认为0。意味着指定方法会应用到DataFrame上。...指定为1,我们让.applay(...)方法将指定xml_encode(...)方法应用到DataFrame一行上。...参数inplace=True直接在原来DataFrame对象上移除数据,而非复制出一个DataFrame、清理后再返回;默认是inplace=False: url_read.dropna (thresh

    8.3K20

    pandas操作excel全总结

    首先,了解下pandas两个主要数据结构,一个是Series,另一个是DataFrame。 Series一种增强一维数组,类似于列表,由索引(index)和(values)组成。...DataFrame是一个类似表格二维数据结构,索引包括索引和行索引,可以是不同类型(数值、字符串、布尔等)。DataFrame一行都是一个Series。...'] # 查看行索引列表 print(result.index.values) # [0 1 2 3] 新建excel写入数据 import pandas as pd result = pd.DataFrame...「两种查询方法介绍」 「loc」 根据行,标签查询 「iloc」 通过行号索引行数据,行号从0开始,逐次加1。...(axis = 0) # 删除有缺失行 df.dropna(axis = 1) # 删除有缺失 当然了,pandas除了读取csv和excel文件之外,读写数据方法还有很多种,感兴趣的话,大家可以根据官方文档学习

    21.6K44

    pandas技巧4

    =False) # 查看Series对象唯一和计数 df.apply(pd.Series.value_counts) # 查看DataFrame对象唯一和计数 df.isnull().any...() # 检查DataFrame对象返回一个Boolean数组 pd.notnull() # 检查DataFrame对象非空返回一个Boolean数组 df.dropna() #...x) # 用x替换DataFrame对象中所有的空,支持df[column_name].fillna(x) s.astype(float) # 将Series数据类型更改为float类型 s.replace...) # 对DataFrame应用函数np.mean data.apply(np.max,axis=1) # 对DataFrame一行应用函数np.max df.groupby(col1)...df.mean() # 返回所有均值 df.corr() # 返回之间相关系数 df.count() # 返回非空个数 df.max() # 返回最大 df.min

    3.4K20

    Pandas速查手册中文版

    s.value_counts(dropna=False):查看Series对象唯一和计数 df.apply(pd.Series.value_counts):查看DataFrame对象唯一和计数...():检查DataFrame对象返回一个Boolean数组 pd.notnull():检查DataFrame对象非空返回一个Boolean数组 df.dropna():删除所有包含空行...DataFrame应用函数np.mean data.apply(np.max,axis=1):对DataFrame一行应用函数np.max 数据合并 df1.append(df2):将df2...执行SQL形式join 数据统计 df.describe():查看数据汇总统计 df.mean():返回所有均值 df.corr():返回之间相关系数 df.count():返回非空个数...df.max():返回最大 df.min():返回最小 df.median():返回中位数 df.std():返回标准差

    12.2K92

    Python进阶之Pandas入门(一) 介绍和核心

    pandas将从CSV中提取数据到DataFrame,这时候数据可以被看成是一个Excel表格,然后让你做这样事情: 计算统计数据并回答有关数据问题,比如平均值、中值、最大或最小是多少...A和B相关吗?C数据分布情况如何? 通过删除缺失根据某些条件过滤行或来清理数据 在Matplotlib帮助下可视化数据。绘制条形图、线条、直方图、气泡等。...2 pandas和其它工具包关系 pandas不仅是数据科学工具箱中心组件,而且与该集合其他工具包一起使用: pandas构建在NumPy包顶部,这意味着在pandas中使用或复制了许多NumPy...从头创建DataFrame有许多方法,但是一个很好选择是使用简单dict字典 假设我们有一个卖苹果和橘子水果摊。我们希望每个水果都有一,每个客户购买都有一行。...数据每个(键、)项对应于结果DataFrame一个。这个DataFrame索引在创建时被指定为数字0-3,但是我们也可以在初始化DataFrame时创建自己索引。

    2.7K20

    数据分析篇 | PyCon 大咖亲传 pandas 25 式,长文建议收藏

    一行代码就可以解决这个问题,现在所有都转成 float 了。 ? 8....打开要复制 Excel 文件,选取内容,复制。 ? 与 read_csv() 函数类似, read_clipboard() 会自动检测列名与数据类型。 ? ? 真不错!...用 dropna() 删除所有缺失。 ? 只想删除缺失高于 10% 缺失,可以设置 dropna() 里阈值,即 threshold. ? 16....接下来,为 DataFrame 新增一,total_price。 ? 如上所示,一行都列出了对应订单总价。 这样一来,计算每行产品占订单总价百分比就易如反掌了。 ? 20....本例简单介绍一下 ProfileReport() 函数,这个函数支持任意 DataFrame生成交互式 HTML 数据报告: 第一部分是纵览数据集,还会列出数据一些可能存在问题; 第二部分汇总数据

    7.1K20

    快速介绍Python数据分析库pandas基础知识和代码示例

    通常回根据一个或多个对panda DataFrame进行排序,或者根据panda DataFrame行索引或行名称进行排序。 例如,我们希望按学生名字按升序排序。...我们将调用pivot_table()函数设置以下参数: index设置为 'Sex',因为这是来自df,我们希望在一行中出现一个唯一 values为'Physics','Chemistry...使用max()查找一行最大 # Get a series containing maximum value of each row max_row = df.max(axis=1) ?...类似地,我们可以使用df.min()来查找一行最小。 其他有用统计功能: sum():返回所请求总和。默认情况下,axis是索引(axis=0)。...mean():返回平均值 median():返回中位数 std():返回数值标准偏差。 corr():返回数据格式之间相关性。 count():返回中非空数量。

    8.1K20

    手把手教你做一个“渣”数据师,用Python代替老情人Excel

    5、略过行和 默认read_excel参数假定第一行列表名称,会自动合并为DataFrame标签。...1、从“头”到“脚” 查看第一行或最后五行。默认为5,也可以自定义参数。 ? 2、查看特定数据 ? 3、查看所有名字 ? 4、查看信息 查看DataFrame数据属性总结: ?...7、用列表筛选多种数值 ? 8、筛选不在列表或Excel ? 9、用多个条件筛选多数据 输入应为一个表,此方法相当于excel高级过滤器功能: ? 10、根据数字条件过滤 ?...11、在Excel复制自定义筛选器 ? 12、合并两个过滤器计算结果 ? 13、包含Excel功能 ? 14、从DataFrame获取特定 ?...有四种合并选项: left——使用左侧DataFrame共享匹配右侧DataFrame,N/A为NaN; right——使用右侧DataFrame共享匹配左侧DataFrame,N/A为

    8.4K30

    Pandas 25 式

    ~ 按行 用多个文件建立 DataFrame ~ 按 从剪贴板创建 DataFrameDataFrame 分割为两个随机子集 根据多个类别筛选 DataFrame 根据最大类别筛选 DataFrame...一行代码就可以解决这个问题,现在所有都转成 float 了。 ? 8....打开要复制 Excel 文件,选取内容,复制。 ? 与 read_csv() 函数类似, read_clipboard() 会自动检测列名与数据类型。 ? ? 真不错!...用 dropna() 删除所有缺失。 ? 只想删除缺失高于 10% 缺失,可以设置 dropna() 里阈值,即 threshold. ? 16....接下来,为 DataFrame 新增一,total_price。 ? 如上所示,一行都列出了对应订单总价。 这样一来,计算每行产品占订单总价百分比就易如反掌了。 ? 20.

    8.4K00

    【Python】这25个Pandas高频实用技巧,不得不服!

    3更改列名 我们来看一下刚才我们创建示例DataFrame: df 我更喜欢在选取pandas时候使用点(.),但是这对那么列名中含有空格不会生效。让我们来修复这个问题。...从剪贴板创建DataFrame 假设你将一些数据储存在Excel或者Google Sheet,你又想要尽快地将他们读取至DataFrame。 你需要选择这些数据复制至剪贴板。...类似地,你可以通过mean()和isna()函数找出缺失百分比。...(10) 你可以看到,每个订单总价格在一行显示出来了。...它会返回一个互动HTML报告: 第一部分为该数据集总览,以及该数据集可能出现问题列表; 第二部分为总结。

    6.6K50

    快速提升效率6个pandas使用小技巧

    从剪切板创建DataFrame pandasread_clipboard()方法非常神奇,可以把剪切板数据变成dataframe格式,也就是说直接在excel复制表格,可以快速转化为dataframe...以下面这个excel数据表为例,全部选中,按ctrl+c复制: 然后在python执行pd.read_clipboard(),就能得到一模一样dataframe数据表: pd.read_clipboard...检测并处理缺失 有一种比较通用检测缺失方法是info(),它可以统计非缺失数量。...') 用前一对应位置替换缺失: df.fillna(axis=1, method='ffill') 用下一行对应位置替换缺失: df.fillna(axis=0, method='bfill...在上图中,glob()在指定目录查找所有以“ data_row_”开头CSV文件。 glob()以任意顺序返回文件名,这就是为什么使用sort()函数对列表进行排序原因。

    3.3K10

    20个能够有效提高 Pandas数据分析效率常用函数,附带解释和例子

    Melt Melt用于将维数较大 dataframe转换为维数较少 dataframe。一些dataframe包含连续度量或变量。在某些情况下,将这些列表示为行可能更适合我们任务。...df.year.nunique() 10 df.group.nunique() 3 我们可以直接将nunique函数应用于dataframe查看唯一数量: ?...如果axis参数设置为1,nunique将返回每行唯一数目。 13. Lookup 'lookup'可以用于根据行、标签在dataframe查找指定。假设我们有以下数据: ?...Merge Merge()根据共同组合dataframe。考虑以下两个数据: ? 我们可以基于共同合并它们。设置合并条件参数是“on”参数。 ?...例如,我们可以使用pandas dataframesstyle属性更改dataframe样式。

    5.7K30

    Pandas | 数据结构

    Series 3.1 仅有数据列表即可产生最简单Series 3.2 创建一个具有标签索引Series 3.3 使用Python字典创建Series 3.4 根据标签索引查询数据 4....DataFrame 4.1 根据多个字典序列创建dataframe 5. 从DataFrame查询出Series 5.1 查询一 5.2 查询多 5.3 查询一行 5.4 查询多行 1....DataFrame:代表整个表格对象,是一个二维数据,有多行和多; Series:或者一行都是一个Series,他是一个一维数据(图中红框)。 2....DataFrame DataFrame是一个表格型数据结构; 可以是不同类型(数值、字符串、布尔等) 既有行索引index,也有索引columns,可以被看做由Series组成字典。...从DataFrame查询出Series 如果只查询一行、一,返回是pd.Series; 如果查询多行、多,返回是pd.DataFrame

    1.6K30

    6个提升效率pandas小技巧

    从剪切板创建DataFrame pandasread_clipboard()方法非常神奇,可以把剪切板数据变成dataframe格式,也就是说直接在excel复制表格,可以快速转化为dataframe...检测并处理缺失 有一种比较通用检测缺失方法是info(),它可以统计非缺失数量。...') 用前一对应位置替换缺失: df.fillna(axis=1, method='ffill') 用下一行对应位置替换缺失: df.fillna(axis=0, method='bfill...从多个文件构建一个DataFrame 有时候数据集可能分布在多个excel或者csv文件,但需要把它读取到一个DataFrame,这样需求该如何实现?...在上图中,glob()在指定目录查找所有以“ data_row_”开头CSV文件。 glob()以任意顺序返回文件名,这就是为什么使用sort()函数对列表进行排序原因。

    2.8K20
    领券