处理大规模API请求涉及以下几个核心概念:
高效处理25,000个GET请求的优势包括:
// 使用Promise.all并发处理请求
async function fetchAllData(urls) {
const promises = urls.map(url =>
fetch(url).then(res => res.json())
);
return Promise.all(promises);
}
// 控制并发数量的版本
async function fetchWithConcurrency(urls, maxConcurrent = 100) {
const results = [];
for (let i = 0; i < urls.length; i += maxConcurrent) {
const batch = urls.slice(i, i + maxConcurrent);
const batchResults = await Promise.all(batch.map(url =>
fetch(url).then(res => res.json())
));
results.push(...batchResults);
}
return results;
}
# Flask示例:使用缓存和异步处理
from flask import Flask, jsonify
from flask_caching import Cache
import requests
app = Flask(__name__)
cache = Cache(app, config={'CACHE_TYPE': 'simple'})
@app.route('/api/data/<item_id>')
@cache.cached(timeout=60)
def get_data(item_id):
# 模拟数据处理
return jsonify({"id": item_id, "data": "value"})
if __name__ == '__main__':
app.run(threaded=True)
// Java示例:使用RabbitMQ处理请求
import com.rabbitmq.client.*;
public class RequestProcessor {
private final static String QUEUE_NAME = "api_requests";
public static void main(String[] argv) throws Exception {
ConnectionFactory factory = new ConnectionFactory();
factory.setHost("localhost");
try (Connection connection = factory.newConnection();
Channel channel = connection.createChannel()) {
channel.queueDeclare(QUEUE_NAME, false, false, false, null);
DeliverCallback deliverCallback = (consumerTag, delivery) -> {
String message = new String(delivery.getBody(), "UTF-8");
// 处理请求
System.out.println("Processing: " + message);
};
channel.basicConsume(QUEUE_NAME, true, deliverCallback, consumerTag -> { });
}
}
}
原因:API有速率限制 解决方案:
# 指数退避示例
import time
import requests
def fetch_with_retry(url, max_retries=5):
for attempt in range(max_retries):
try:
response = requests.get(url)
if response.status_code == 429:
wait = (2 ** attempt) * 0.1
time.sleep(wait)
continue
return response
except requests.exceptions.RequestException:
if attempt == max_retries - 1:
raise
time.sleep((2 ** attempt) * 0.1)
原因:同步处理或资源不足 解决方案:
// Node.js异步处理示例
const axios = require('axios');
const { Worker, isMainThread, workerData } = require('worker_threads');
if (isMainThread) {
// 主线程分发任务
const urls = [...]; // 25,000个URL
const chunkSize = 1000;
for (let i = 0; i < urls.length; i += chunkSize) {
new Worker(__filename, { workerData: urls.slice(i, i + chunkSize) });
}
} else {
// 工作线程处理请求
Promise.all(workerData.map(url =>
axios.get(url).then(res => res.data)
)).then(results => {
// 处理结果
});
}
原因:同时处理太多数据 解决方案:
// Go语言分批处理示例
package main
import (
"net/http"
"sync"
)
func processBatch(urls []string) {
var wg sync.WaitGroup
for _, url := range urls {
wg.Add(1)
go func(u string) {
defer wg.Done()
resp, _ := http.Get(u)
defer resp.Body.Close()
// 处理响应
}(url)
}
wg.Wait()
}
func main() {
allUrls := [...] // 25,000个URL
batchSize := 500
for i := 0; i < len(allUrls); i += batchSize {
end := i + batchSize
if end > len(allUrls) {
end = len(allUrls)
}
processBatch(allUrls[i:end])
}
}
通过合理设计系统架构和选择适当的技术方案,可以有效处理25,000个GET请求,同时保持系统稳定性和响应速度。
没有搜到相关的文章