首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    微软亚洲研究院:计算机看懂视频的步骤及未来努力方向

    对于人类来说,看懂视频似乎是再简单不过的事情了。从出生就开始拥有视觉,人眼所看到的世界就是连贯动态的影像。视野中每一个动态的形象都被我们轻易的识别和捕捉。但这对于计算机来说就没那么容易了。对于计算机来说,画面内容的识别,动作的捕捉,都要经过复杂的计算才能得出。当计算机从视频中识别出一些关键词后,由于语义和句子结构的复杂性,还要涉及词汇的词性、时态、单复数等表达,要让计算机将单个的词汇组成通顺准确的句子也是难上加难。 那么让计算机看懂视频都要经过哪几步呢? 首先,识别视频里的内容。目前的图像识别研究大多基于C

    02

    NEC开发了深度学习自动优化技术、更易于提高识别精度

    近日,NEC宣布开发了更易于提高识别精度的深度学习自动优化技术。 以往进行深度学习时,很难基于神经网络构造(注1)进行调整,所以无法在整个网络进行最优化的学习,因而无法充分发挥其识别性。此次开发的技术, 可以基于其结构自动优化神经网络学习的进度,从而轻松实现比以往更加精准的识别。 此技术的出现,使得应用了图像识别及声音识别等深度学习技术的各个领域,均有望实现识别精度的进一步提高。例如,人脸识别和行为分析等视频监控识别精度的提高、基础设施等点检工作效率的提高,实现自动检测灾害、事故和灾难等。 一、背景 近年来

    06

    智能语音扩展数字化服务

    广义上来讲智能语音技术有各种各样的定义,以上是常见的一些热门的场景。语音识别,刚才罗老师也分享了部分内容。语音合成是文字变成语音,这部分我们后面会详细展开。再往后看,声纹识别,在智能车里面有很多的功能需要人的发音媒介来控制命令的时候声纹就很重要。开一个车门,车上有一个小孩,突然哭闹,下一个不合适的指令,你区别不出来这个人,对语音控制来说不合适的。或者有一些不当的操作,可以通过声纹来做,通过声音来做对人的识别和认证的过程。声纹识别其实在未来的应用场景比较热门,实际应用当中遇到大的挑战点是什么?很多其他的生物识别靠人脸或指纹这类比较稳定的特征,可是声纹不稳定,人高兴的时候,第一天晚上唱了卡拉OK,第二天声音哑了,怎么能够在变化比较明显的生物特征上做识别是一个很大的挑战。

    05

    倪捷:智能语音扩展数字化服务

    广义上来讲智能语音技术有各种各样的定义,以上是常见的一些热门的场景。语音识别,刚才罗老师也分享了部分内容。语音合成是文字变成语音,这部分我们后面会详细展开。再往后看,声纹识别,在智能车里面有很多的功能需要人的发音媒介来控制命令的时候声纹就很重要。开一个车门,车上有一个小孩,突然哭闹,下一个不合适的指令,你区别不出来这个人,对语音控制来说不合适的。或者有一些不当的操作,可以通过声纹来做,通过声音来做对人的识别和认证的过程。声纹识别其实在未来的应用场景比较热门,实际应用当中遇到大的挑战点是什么?很多其他的生物识别靠人脸或指纹这类比较稳定的特征,可是声纹不稳定,人高兴的时候,第一天晚上唱了卡拉OK,第二天声音哑了,怎么能够在变化比较明显的生物特征上做识别是一个很大的挑战。

    02

    重磅丨直击“人机大战”第二轮:声纹识别百度小度1:1战平人类,比赛的背后究竟发生了什么?

    如果说在上一轮人机大战的人脸识别对决中,由于小度对阵了并不擅长人脸识别的王峰,令比赛意义打了折扣,那么昨天进行的第二轮声音识别的人机大战,虽然最终只是战平,但对于AI 界的意义却似乎更大。 原因有两点:一、公认实力顶尖的对手;二、业界公认困难的比赛内容。 在对手上,此次迎战百度小度的是名人堂公认最擅长声音辨别的选手孙亦廷,他辨别声音细节的能力在名人堂无出其右,能通过水球从0~70米高空坠地破碎的声音,来准确辨别水球下落时的高度。这相当于在一根70米长的琴弦上拉奏任意位置,他都通过音高准确辨别拉弦的位置,甚至

    05
    领券