首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【Python】PySpark 数据计算 ④ ( RDD#filter 方法 - 过滤 RDD 中的元素 | RDD#distinct 方法 - 对 RDD 中的元素去重 )

一、RDD#filter 方法 1、RDD#filter 方法简介 RDD#filter 方法 可以 根据 指定的条件 过滤 RDD 对象中的元素 , 并返回一个新的 RDD 对象 ; RDD#filter...传入 filter 方法中的 func 函数参数 , 其函数类型 是 接受一个 任意类型 元素作为参数 , 并返回一个布尔值 , 该布尔值的作用是表示该元素是否应该保留在新的 RDD 中 ; 返回 True...保留元素 ; 返回 False 删除元素 ; 3、代码示例 - RDD#filter 方法示例 下面代码中的核心代码是 : # 创建一个包含整数的 RDD rdd = sc.parallelize([...RDD#distinct 方法 用于 对 RDD 中的数据进行去重操作 , 并返回一个新的 RDD 对象 ; RDD#distinct 方法 不会修改原来的 RDD 对象 ; 使用时 , 直接调用 RDD...对象的 distinct 方法 , 不需要传入任何参数 ; new_rdd = old_rdd.distinct() 上述代码中 , old_rdd 是原始 RDD 对象 , new_rdd 是元素去重后的新的

48310

【Python】PySpark 数据计算 ⑤ ( RDD#sortBy方法 - 排序 RDD 中的元素 )

一、RDD#sortBy 方法 1、RDD#sortBy 语法简介 RDD#sortBy 方法 用于 按照 指定的 键 对 RDD 中的元素进行排序 , 该方法 接受一个 函数 作为 参数 , 该函数从...RDD 中的每个元素提取 排序键 ; 根据 传入 sortBy 方法 的 函数参数 和 其它参数 , 将 RDD 中的元素按 升序 或 降序 进行排序 , 同时还可以指定 新的 RDD 对象的 分区数...; 返回值说明 : 返回一个新的 RDD 对象 , 其中的元素是 按照指定的 排序键 进行排序的结果 ; 2、RDD#sortBy 传入的函数参数分析 RDD#sortBy 传入的函数参数 类型为 :..., 获取到每个单词 , 根据上述单词列表 , 生成一个 二元元组 列表 , 列表中每个元素的 键 Key 为单词 , 值 Value 为 数字 1 , 对上述 二元元组 列表 进行 聚合操作 , 相同的...键 Key 对应的 值 Value 进行相加 ; 将聚合后的结果的 单词出现次数作为 排序键 进行排序 , 按照升序进行排序 ; 2、代码示例 对 RDD 数据进行排序的核心代码如下 : # 对 rdd4

49210
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【Python】PySpark 数据输入 ① ( RDD 简介 | RDD 中的数据存储与计算 | Python 容器数据转 RDD 对象 | 文件文件转 RDD 对象 )

    ; 2、RDD 中的数据存储与计算 PySpark 中 处理的 所有的数据 , 数据存储 : PySpark 中的数据都是以 RDD 对象的形式承载的 , 数据都存储在 RDD 对象中 ; 计算方法...: 大数据处理过程中使用的计算方法 , 也都定义在了 RDD 对象中 ; 计算结果 : 使用 RDD 中的计算方法对 RDD 中的数据进行计算处理 , 获得的结果数据也是封装在 RDD 对象中的 ; PySpark...中 , 通过 SparkContext 执行环境入口对象 读取 基础数据到 RDD 对象中 , 调用 RDD 对象中的计算方法 , 对 RDD 对象中的数据进行处理 , 得到新的 RDD 对象 其中有...上一次的计算结果 , 再次对新的 RDD 对象中的数据进行处理 , 执行上述若干次计算 , 会 得到一个最终的 RDD 对象 , 其中就是数据处理结果 , 将其保存到文件中 , 或者写入到数据库中 ;...没有值 ; data4 = {"Tom": 18, "Jerry": 12} # 输出结果 rdd4 分区数量和元素: 12 , ['Tom', 'Jerry'] 字符串 转换后的 RDD 数据打印出来

    49310

    在 PySpark 中,如何将 Python 的列表转换为 RDD?

    在 PySpark 中,可以使用SparkContext的parallelize方法将 Python 的列表转换为 RDD(弹性分布式数据集)。...以下是一个示例代码,展示了如何将 Python 列表转换为 RDD:from pyspark import SparkContext# 创建 SparkContextsc = SparkContext.getOrCreate...)# 定义一个 Python 列表data_list = [1, 2, 3, 4, 5]# 将 Python 列表转换为 RDDrdd = sc.parallelize(data_list)# 打印 RDD...的内容print(rdd.collect())在这个示例中,我们首先创建了一个SparkContext对象,然后定义了一个 Python 列表data_list。...接着,使用SparkContext的parallelize方法将这个列表转换为 RDD,并存储在变量rdd中。最后,使用collect方法将 RDD 的内容收集到驱动程序并打印出来。

    6610

    【Python】PySpark 数据计算 ③ ( RDD#reduceByKey 函数概念 | RDD#reduceByKey 方法工作流程 | RDD#reduceByKey 语法 | 代码示例 )

    一、RDD#reduceByKey 方法 1、RDD#reduceByKey 方法概念 RDD#reduceByKey 方法 是 PySpark 中 提供的计算方法 , 首先 , 对 键值对 KV...类型 RDD 对象 数据 中 相同 键 key 对应的 值 value 进行分组 , 然后 , 按照 开发者 提供的 算子 ( 逻辑 / 函数 ) 进行 聚合操作 ; 上面提到的 键值对 KV 型 的数据...", 12) PySpark 中 , 将 二元元组 中 第一个元素 称为 键 Key , 第二个元素 称为 值 Value ; 按照 键 Key 分组 , 就是按照 二元元组 中的 第一个元素 的值进行分组...Y ; 具体操作方法是 : 先将相同 键 key 对应的 值 value 列表中的元素进行 reduce 操作 , 返回一个减少后的值,并将该键值对存储在RDD中 ; 2、RDD#reduceByKey...方法工作流程 RDD#reduceByKey 方法 工作流程 : reduceByKey(func) ; 首先 , 对 RDD 对象中的数据 分区 , 每个分区中的相同 键 key 对应的 值 value

    75920

    Pyspark学习笔记(五)RDD的操作

    ( ) 类似于sql中的union函数,就是将两个RDD执行合并操作;但是pyspark中的union操作似乎不会自动去重,如果需要去重就使用下面的distinct distinct( ) 去除RDD中的重复值...;带有参数numPartitions,默认值为None,可以对去重后的数据重新分区 groupBy() 对元素进行分组。...可以是具名函数,也可以是匿名,用来确定对所有元素进行分组的键,或者指定用于对元素进行求值以确定其分组方式的表达式.https://sparkbyexamples.com/pyspark/pyspark-groupby-explained-with-example...和之前介绍的flatmap函数类似,只不过这里是针对 (键,值) 对的值做处理,而键不变 分组聚合排序操作 描述 groupByKey() 按照各个键,对(key,value) pair进行分组,...intersection() 返回两个RDD中的共有元素,即两个集合相交的部分.返回的元素或者记录必须在两个集合中是一模一样的,即对于键值对RDD来说,键和值都要一样才行。

    4.4K20

    Pyspark学习笔记(五)RDD操作(一)_RDD转换操作

    `persist( ) 前言 提示:本篇博客讲的是RDD的操作中的转换操作,即 RDD Transformations 主要参考链接: 1.PySpark RDD Transformations with...(10,1,2,4), (10,1,2,4), (20,2,2,2), (20,1,2,3)] 5.distinct(numPartitions=None) 去除RDD中的重复值;带有参数numPartitions...10,1,2,4)] 6.groupBy() 对元素进行分组,可以是具名函数,也可以是匿名,用来确定对所有元素进行分组的键,或者指定用于对元素进行求值以确定其分组方式的表达式...._2.mapValues(list).collect()) 这时候就是以匿名函数返回的布尔值作为分组的 key【键】了 [('True', [(10,1,2,3), [(10,1,2,4), (10,1,2,4..."groupby_3_明文\n", groupby_rdd_3.mapValues(list).collect()) 这时候就是以匿名函数返回的 x[0]的具体值 作为分组的 key【键】了 [(10,

    2K20

    对spark中RDD的partition通俗易懂的介绍

    我们要想对spark中RDD的分区进行一个简单的了解的话,就不免要先了解一下hdfs的前世今生。 众所周知,hdfs是一个非常不错的分布式文件系统,这是这么多年来大家有目共睹的。...接下来我们就介绍RDD,RDD是什么?弹性分布式数据集。 弹性:并不是指他可以动态扩展,而是血统容错机制。 分布式:顾名思义,RDD会在多个节点上存储,就和hdfs的分布式道理是一样的。...我们就拿hdfs举例,将RDD持久化到hdfs上,RDD的每个partition就会存成一个文件,如果文件小于128M,就可以理解为一个partition对应hdfs的一个block。...鉴于上述partition大于128M的情况,在做sparkStreaming增量数据累加时一定要记得调整RDD的分区数。...那么该RDD保存在hdfs上就会有20个block,下一批次重新读取hdfs上的这些数据,RDD的partition个数就会变为20个。

    1.5K00

    spark入门框架+python

    groupbykey:通过key进行分组 在java中返回类型还是一个JavaPairRDD,第一个类型是key,第二个是Iterable里面放了所有相同key的values值 ?...:即将RDD所有元素聚合,第一个和第二个元素聚合产生的值再和第三个元素聚合,以此类推 ?...first() : 返回RDD中的第一个元素: ? top:返回RDD中最大的N个元素 ? takeOrdered(n [, key=None]) :返回经过排序后的RDD中前n个元素 ?...fold:对每个分区给予一个初始值进行计算: ? countByKey:对相同的key进行计数: ? countByValue:对相同的value进行计数 ? takeSample:取样 ?...foreach:遍历RDD中的每个元素 saveAsTextFile:将RDD元素保存到文件中(可以本地,也可以是hdfs等文件系统),对每个元素调用toString方法 textFile:加载文件 ?

    1.5K20

    Python大数据处理扩展库pySpark用法精要

    Spark是一个开源的、通用的并行计算与分布式计算框架,其活跃度在Apache基金会所有开源项目中排第三位,最大特点是基于内存计算,适合迭代计算,兼容多种应用场景,同时还兼容Hadoop生态系统中的组件...扩展库pyspark提供了SparkContext(Spark功能的主要入口,一个SparkContext表示与一个Spark集群的连接,可用来创建RDD或在该集群上广播变量)、RDD(Spark中的基本抽象...(用来配置Spark)、SparkFiles(访问任务的文件)、StorageLevel(更细粒度的缓冲永久级别)等可以公开访问的类,并且提供了pyspark.sql、pyspark.streaming...43.0 >>> rdd.max(key=str) 5.0 >>> rdd.min() #最小值 1.0 >>> rdd.sum() #所有元素求和 59.0 >>> from random import...= sc.parallelize(range(1, 6)).groupBy(lambda x: x%3).collect() #对所有数据进行分组 >>> for k, v in result:

    1.8K60

    独家 | 一文读懂PySpark数据框(附实例)

    但是我们可以应用某些转换方法来转换它的值,如对RDD(Resilient Distributed Dataset)的转换。...PySpark数据框实例2:超级英雄数据集 1. 加载数据 这里我们将用与上一个例子同样的方法加载数据: 2. 筛选数据 3. 分组数据 GroupBy 被用于基于指定列的数据框的分组。...这里,我们将要基于Race列对数据框进行分组,然后计算各分组的行数(使用count方法),如此我们可以找出某个特定种族的记录数。 4....到这里,我们的PySpark数据框教程就结束了。 我希望在这个PySpark数据框教程中,你们对PySpark数据框是什么已经有了大概的了解,并知道了为什么它会在行业中被使用以及它的特点。...对大数据、数据挖掘和分析项目跃跃欲试却苦于没有机会和数据。目前正在摸索和学习中,也报了一些线上课程,希望对数据建模的应用场景有进一步的了解。

    6K10

    pyspark(一)--核心概念和工作原理

    在之前文章中我们介绍了大数据的基础概念,和pyspark的安装。本文我们主要介绍pyspark的核心概念和原理,后续有时间会持续介绍pyspark的使用。...它使用的RDD设计就尽可能去避免硬盘读写,而是将数据优先存储在内存,为了优化RDD尽量在内存中的计算流程,还引入了lazy特性。...计算的时候会通过compute函数得到每个分片的数据,每个分片被一个计算任务处理,分片决定了计算任务的粒度(2)只读:RDD是只读的,想要改变RDD的数据,只能基于现有的RDD通过操作算子转换到一个新的...(3)依赖:上面提到RDD通过操作算字进行转换,所以RDDs之间是有依赖关系的窄依赖:子RDD和父RDD中的各个partition是一一对应的关系,只单个依赖,不需要等待其他partition。...宽依赖:子RDD和父RDD中的partition存在一对多的关系,子RDD中的某个partition还要等待其他或者父RDD的partition。比如groupby,sortby产生宽依赖。

    3.3K40

    PySpark数据计算

    在 PySpark 中,所有的数据计算都是基于 RDD(弹性分布式数据集)对象进行的。RDD 提供了丰富的成员方法(算子)来执行各种数据处理操作。...【拓展】链式调用:在编程中将多个方法或函数的调用串联在一起的方式。在 PySpark 中,链式调用非常常见,通常用于对 RDD 进行一系列变换或操作。...二、flatMap算子定义: flatMap算子将输入RDD中的每个元素映射到一个序列,然后将所有序列扁平化为一个单独的RDD。简单来说,就是对rdd执行map操作,然后进行解除嵌套操作。...三、reduceByKey算子定义:reduceByKey算子用于将具有相同键的值进行合并,并通过指定的聚合函数生成一个新的键值对 RDD。...语法:new_rdd = rdd.filter(func)参数func是一个函数,用于接收 RDD 中的每个元素,并返回一个布尔值(True 或 False)。

    14810

    大数据开发!Pandas转spark无痛指南!⛵

    ,dfn]df = unionAll(*dfs) 简单统计Pandas 和 PySpark 都提供了为 dataframe 中的每一列进行统计计算的方法,可以轻松对下列统计值进行统计计算:列元素的计数列元素的平均值最大值最小值标准差三个分位数...:25%、50% 和 75%Pandas 和 PySpark 计算这些统计值的方法很类似,如下: Pandas & PySparkdf.summary()#或者df.describe() 数据分组聚合统计...在 Pandas 中,要分组的列会自动成为索引,如下所示:图片要将其作为列恢复,我们需要应用 reset_index方法:df.groupby('department').agg({'employee'...我们经常要进行数据变换,最常见的是要对「字段/列」应用特定转换,在Pandas中我们可以轻松基于apply函数完成,但在PySpark 中我们可以使用udf(用户定义的函数)封装我们需要完成的变换的Python...另外,大家还是要基于场景进行合适的工具选择:在处理大型数据集时,使用 PySpark 可以为您提供很大的优势,因为它允许并行计算。 如果您正在使用的数据集很小,那么使用Pandas会很快和灵活。

    8.2K72

    Pyspark学习笔记(五)RDD操作(四)_RDD连接集合操作

    的连接/集合操作 1.join-连接 对应于SQL中常见的JOIN操作 菜鸟教程网关于SQL连接总结性资料 Pyspark中的连接函数要求定义键,因为连接的过程是基于共同的字段(键)来组合两个RDD...中的记录,因此需要操作键值对RDD rdd_1 = sc.parallelize([('USA', (1,2,3)), ('CHINA', (4,5,6)), ('RUSSIA', (7,8,9))])...两个RDD中各自包含的key为基准,能找到共同的Key,则返回两个RDD的值,找不到就各自返回各自的值,并以none****填充缺失的值 rdd_fullOuterJoin_test = rdd_1...实现过程和全连接其实差不多,就是数据的表现形式有点区别 生成的并不是一个新的键值对RDD,而是一个可迭代的对象 rdd_cogroup_test = rdd_1.cogroup(rdd_2)...第二个RDD中的元素,返回第一个RDD中有,但第二个RDD中没有的元素。

    1.3K20

    Spark算子篇 --Spark算子之combineByKey详解

    代码 from pyspark.conf import SparkConf from pyspark.context import SparkContext conf = SparkConf().setMaster...第一个函数作用于每一个组的第一个元素上,将其变为初始值 第二个函数:一开始a是初始值,b是分组内的元素值,比如A[1_],因为没有b值所以不能调用combine函数,第二组因为函数内元素值是[2_,3]...调用combine函数后为2_@3,以此类推 第三个函数:reduce端大聚合,把相同的key的数据拉取到一个节点上,然后分组。...拓展 1.用combinebykey实现groupbykey的逻辑 1.1 combinebykey的三个参数 第一个应该返回一个列表,初始值 第二个函数中的a依赖于第一个函数的返回值 第三个函数的a,...b依赖于第二个函数的返回值 1.2 解释: ?

    80120
    领券