首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

NumPy 和 Pandas 数据分析实用指南:1~6 全

笔记本启动后,我们从一个代码块开始。...在第一个单元格中,我们将输入一些代码,在第二个单元格中,我们可以输入依赖于第一个单元格中的代码的代码。 注意当我们尝试在第一个单元格中执行代码之前在第二个单元格中执行代码时会发生什么。...也就是说,如果要基于索引选择行,而要基于整数位置选择列,请首先使用loc方法选择行,然后使用iloc方法选择列。 执行此操作时,如何选择数据帧的元素没有任何歧义。 如果您只想选择一列怎么办?...84bb-3556f47f7939.png)] 这里我们从另一个数据帧中减去一个数据帧: [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8h0LIYmt-1681367023189....png)] 按值排序 如果我们希望对数据帧的行或元素序列进行排序,则需要使用sort_values方法。

5.4K30

加速数据分析,这12种高效Numpy和Pandas函数为你保驾护航

简化将数据转换为 DataFrame 对象的过程,而这些数据基本是 Python 和 NumPy 数据结构中不规则、不同索引的数据; 基于标签的智能切片、索引以及面向大型数据集的子设定; 更加直观地合并以及连接数据集...用于将一个 Series 中的每个值替换为另一个值,该值可能来自一个函数、也可能来自于一个 dict 或 Series。...Isin () 有助于选择特定列中具有特定(或多个)值的行。...当一个数据帧分配给另一个数据帧时,如果对其中一个数据帧进行更改,另一个数据帧的值也将发生更改。为了防止这类问题,可以使用 copy () 函数。...dtypes 的列返回数据帧列的一个子集。

7.5K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas 学习手册中文第二版:1~5

    以下内容检索数据帧的第二行: 请注意,此结果已将行转换为Series,数据帧的列名称已透视到结果Series的索引标签中。...以下显示Missoula列中大于82度的值: 然后可以将表达式的结果应用于数据帧(和序列)的[]运算符,这仅导致返回求值为True的表达式的行: 该技术在 pandas 术语中称为布尔选择,它将构成基于特定列中的值选择行的基础...一种常见的情况是,一个Series具有整数类型的标签,另一个是字符串,但是值的基本含义是相同的(从远程源获取数据时,这很常见)。...创建数据帧期间的行对齐 选择数据帧的特定列和行 将切片应用于数据帧 通过位置和标签选择数据帧的行和列 标量值查找 应用于数据帧的布尔选择 配置 Pandas 我们使用以下导入和配置语句开始本章中的示例...可以从一个或一组多维数据集创建一个数据帧。

    8.3K10

    加速数据分析,这12种高效Numpy和Pandas函数为你保驾护

    简化将数据转换为 DataFrame 对象的过程,而这些数据基本是 Python 和 NumPy 数据结构中不规则、不同索引的数据; 基于标签的智能切片、索引以及面向大型数据集的子设定; 更加直观地合并以及连接数据集...用于将一个 Series 中的每个值替换为另一个值,该值可能来自一个函数、也可能来自于一个 dict 或 Series。...Isin () 有助于选择特定列中具有特定(或多个)值的行。...当一个数据帧分配给另一个数据帧时,如果对其中一个数据帧进行更改,另一个数据帧的值也将发生更改。为了防止这类问题,可以使用 copy () 函数。...dtypes 的列返回数据帧列的一个子集。

    6.7K20

    增强Jupyter Notebook的功能,这里有四个妙招

    拆分单元格(Split Cells) 拆分单元格允许开发者并排查看 2 个单元格。当你有两个相关单元格时(比如描述及其对应的图示),这个功能非常方便。 ? 4....使用 Qgrid 探索 Dataframes 最后一站是 Qgrid,该工具允许开发者在不使用复杂 Pandas 代码的情况下,探索和编辑数据帧。...Qgrid 可在 Jupyter notebook 中以交互的方式渲染 pandas 数据帧,这样你就可以执行一些直观的控制,如滚动、排序和筛选,以及双击单元格编辑数据帧。...,开发者只需导入 Qgrid,然后将数据帧输入到 show_grid 函数: import qgrid qgrid_widget = qgrid.show_grid(df, show_toolbar=True...) qgrid_widget 这样,你可以对数据帧执行大量交互式操作: 添加和删除行; 筛选行; 编辑单元格。

    1.1K30

    4 个妙招增强 Jupyter Notebook 功能

    拆分单元格(Split Cells) 拆分单元格允许开发者并排查看 2 个单元格。当你有两个相关单元格时(比如描述及其对应的图示),这个功能非常方便。 ? 4....使用 Qgrid 探索 Dataframes 最后一站是 Qgrid,该工具允许开发者在不使用复杂 Pandas 代码的情况下,探索和编辑数据帧。...Qgrid 可在 Jupyter notebook 中以交互的方式渲染 pandas 数据帧,这样你就可以执行一些直观的控制,如滚动、排序和筛选,以及双击单元格编辑数据帧。...,开发者只需导入 Qgrid,然后将数据帧输入到 show_grid 函数: import qgrid qgrid_widget = qgrid.show_grid(df, show_toolbar=True...) qgrid_widget 这样,你可以对数据帧执行大量交互式操作: 添加和删除行; 筛选行; 编辑单元格。

    90110

    4 个妙招增强 Jupyter Notebook 功能

    拆分单元格(Split Cells) 拆分单元格允许开发者并排查看 2 个单元格。当你有两个相关单元格时(比如描述及其对应的图示),这个功能非常方便。 ? 4....使用 Qgrid 探索 Dataframes 最后一站是 Qgrid,该工具允许开发者在不使用复杂 Pandas 代码的情况下,探索和编辑数据帧。...Qgrid 可在 Jupyter notebook 中以交互的方式渲染 pandas 数据帧,这样你就可以执行一些直观的控制,如滚动、排序和筛选,以及双击单元格编辑数据帧。...,开发者只需导入 Qgrid,然后将数据帧输入到 show_grid 函数: import qgrid qgrid_widget = qgrid.show_grid(df, show_toolbar=True...) qgrid_widget 这样,你可以对数据帧执行大量交互式操作: 添加和删除行; 筛选行; 编辑单元格。

    2.2K00

    增强 Jupyter Notebook 的功能,这里有 4 个妙招

    拆分单元格(Split Cells) 拆分单元格允许开发者并排查看 2 个单元格。当你有两个相关单元格时(比如描述及其对应的图示),这个功能非常方便。 ? 4....使用 Qgrid 探索 Dataframes 最后一站是 Qgrid,该工具允许开发者在不使用复杂 Pandas 代码的情况下,探索和编辑数据帧。...Qgrid 可在 Jupyter notebook 中以交互的方式渲染 pandas 数据帧,这样你就可以执行一些直观的控制,如滚动、排序和筛选,以及双击单元格编辑数据帧。...,开发者只需导入 Qgrid,然后将数据帧输入到 show_grid 函数: import qgrid qgrid_widget = qgrid.show_grid(df, show_toolbar=True...) qgrid_widget 这样,你可以对数据帧执行大量交互式操作: 添加和删除行; 筛选行; 编辑单元格。

    1K50

    增强Jupyter Notebook的功能,这里有四个妙招

    拆分单元格(Split Cells) 拆分单元格允许开发者并排查看 2 个单元格。当你有两个相关单元格时(比如描述及其对应的图示),这个功能非常方便。 4....使用 Qgrid 探索 Dataframes 最后一站是 Qgrid,该工具允许开发者在不使用复杂 Pandas 代码的情况下,探索和编辑数据帧。...Qgrid 可在 Jupyter notebook 中以交互的方式渲染 pandas 数据帧,这样你就可以执行一些直观的控制,如滚动、排序和筛选,以及双击单元格编辑数据帧。...,开发者只需导入 Qgrid,然后将数据帧输入到 show_grid 函数: import qgrid qgrid_widget = qgrid.show_grid(df, show_toolbar=True...) qgrid_widget 这样,你可以对数据帧执行大量交互式操作: 添加和删除行; 筛选行; 编辑单元格。

    1K20

    增强Jupyter Notebook的功能,这里有四个妙招

    拆分单元格(Split Cells) 拆分单元格允许开发者并排查看 2 个单元格。当你有两个相关单元格时(比如描述及其对应的图示),这个功能非常方便。 ? 4....使用 Qgrid 探索 Dataframes 最后一站是 Qgrid,该工具允许开发者在不使用复杂 Pandas 代码的情况下,探索和编辑数据帧。...Qgrid 可在 Jupyter notebook 中以交互的方式渲染 pandas 数据帧,这样你就可以执行一些直观的控制,如滚动、排序和筛选,以及双击单元格编辑数据帧。...,开发者只需导入 Qgrid,然后将数据帧输入到 show_grid 函数: import qgrid qgrid_widget = qgrid.show_grid(df, show_toolbar=True...) qgrid_widget 这样,你可以对数据帧执行大量交互式操作: 添加和删除行; 筛选行; 编辑单元格。

    1.4K30

    增强 Jupyter Notebook 的功能,这里有四个妙招

    拆分单元格(Split Cells) 拆分单元格允许开发者并排查看 2 个单元格。当你有两个相关单元格时(比如描述及其对应的图示),这个功能非常方便。 4....使用 Qgrid 探索 Dataframes 最后一站是 Qgrid,该工具允许开发者在不使用复杂 Pandas 代码的情况下,探索和编辑数据帧。...Qgrid 可在 Jupyter notebook 中以交互的方式渲染 pandas 数据帧,这样你就可以执行一些直观的控制,如滚动、排序和筛选,以及双击单元格编辑数据帧。...,开发者只需导入 Qgrid,然后将数据帧输入到 show_grid 函数: import qgrid qgrid_widget = qgrid.show_grid(df, show_toolbar=True...) qgrid_widget 这样,你可以对数据帧执行大量交互式操作: 添加和删除行; 筛选行; 编辑单元格。

    68230

    如何从 Pandas 迁移到 Spark?这 8 个问答解决你所有疑问

    它能以分布式方式处理大数据文件。它使用几个 worker 来应对和处理你的大型数据集的各个块,所有 worker 都由一个驱动节点编排。 这个框架的分布式特性意味着它可以扩展到 TB 级数据。...假设你的数据集中有 10 列,每个单元格有 100 个字符,也就是大约有 100 个字节,并且大多数字符是 ASCII,可以编码成 1 个字节 — 那么规模到了大约 10M 行,你就应该想到 Spark...你完全可以通过 df.toPandas() 将 Spark 数据帧变换为 Pandas,然后运行可视化或 Pandas 代码。  问题四:Spark 设置起来很困呢。我应该怎么办?...它们的主要相似之处有: Spark 数据帧与 Pandas 数据帧非常像。 PySpark 的 groupby、aggregations、selection 和其他变换都与 Pandas 非常像。...有时,在 SQL 中编写某些逻辑比在 Pandas/PySpark 中记住确切的 API 更容易,并且你可以交替使用两种办法。 Spark 数据帧是不可变的。不允许切片、覆盖数据等。

    4.4K10

    数据分析从业者必看!10 个加速 python 数据分析的简易小技巧

    这是对 pandas 数据帧进行探索性数据分析的一种简单快速的方法。pandas df.describe()和 df.info()函数通常用作 EDA 过程的第一步。...但是,它只提供了非常基本的数据概述,对于大型数据集没有太大帮助。另一方面,pandas 分析函数使用 df.profile_report()扩展 pandas 数据帧,以便快速进行数据分析。...2.第二步,为 pandas plots 带来交互性 pandas 有一个内置的.plot()函数作为数据帧类的一部分。然而,用这个函数呈现的可视化并不是交互式的,这使得它不那么吸引人。... 7.打印单元格的所有输出 考虑一个包含以下代码行的 Jupyter notebook 单元: In [1]: 10+5 11+6 Out [1]: 17 通常情况下,单元格中只有最后一个输出会被打印出来...9.自动注释代码 ctrl/cmd+/自动将单元格中选定的行注释掉,再次点击组合将取消对同一行代码的注释。 ?

    2K30

    Python探索性数据分析,这样才容易掌握

    使用 Pandas 库,你可以将数据文件加载到容器对象(称为数据帧, dataframe)中。...将每个 CSV 文件转换为 Pandas 数据帧对象如下图所示: ? 检查数据 & 清理脏数据 在进行探索性分析时,了解您所研究的数据是很重要的。幸运的是,数据帧对象有许多有用的属性,这使得这很容易。...当基于多个数据集之间比较数据时,标准做法是使用(.shape)属性检查每个数据帧中的行数和列数。如图所示: ? 注意:左边是行数,右边是列数;(行、列)。...我们这份数据的第一个问题是 ACT 2017 和 ACT 2018 数据集的维度不一致。让我们使用( .head() )来更好地查看数据,通过 Pandas 库展示了每一列的前五行,前五个标签值。...负相关变量,负1和0之间的相关性值表示一个变量随着另一个变量的增加而减少。

    5K30

    Pandas 秘籍:1~5

    在视觉上,Pandas 数据帧的输出显示(在 Jupyter 笔记本中)似乎只不过是由行和列组成的普通数据表。 隐藏在表面下方的是三个组成部分-您必须具备的索引,列和数据(也称为值)。.../img/00028.jpeg)] 此秘籍使用多个运算符和一个数据帧将本科生的列四舍五入到最接近的百分之一。...,而是使用equals方法: >>> college_ugds_.equals(college_ugds_) True 工作原理 步骤 1 将一个数据帧与一个标量值进行比较,而步骤 2 将一个数据帧与另一个数据帧进行比较...在分析期间,可能首先需要找到一个数据组,该数据组在单个列中包含最高的n值,然后从该子集中找到最低的m基于不同列的值。...步骤 3 通过链接另一个sort_values可以复制nsmallest,并且只需取前五个即可完成查询。head方法显示行。 查看步骤 1 中第一个数据帧的输出,并将其与步骤 3 中的输出进行比较。

    37.6K10

    4 个有效提升 Jupyter Notebooks 效果的非凡技巧

    (3) 拆分单元格 拆分单元格允许您并排查看两个单元格。当你有两个相关的单元格时,这是非常方便的,比如一个描述和它所指的可视化。 ?...4) 使用Qgrid探索数据帧 我们的最后一站是Qgrid-一个允许您在没有任何复杂Pandas代码的情况下浏览和编辑数据帧的工具。...Qgrid以交互方式呈现Jupyter笔记本中的pandas数据帧。通过这种呈现,您可以获得诸如滚动、排序和过滤之类的直观控件,还可以通过双击所需的单元格编辑数据帧。...,只需导入它,然后将数据帧传递给show_grid函数,如下所示: import qgrid qgrid_widget = qgrid.show_grid(df, show_toolbar=True)...qgrid_widget 这样做将显示带有许多交互选项的数据帧: 添加和删除行 筛选行 编辑单元格 还可以通过向show_grid函数传递更多参数来启用多个交互选项。

    1.5K20

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    在 Pandas 中,索引可以设置为一个(或多个)唯一值,这就像在工作表中有一列用作行标识符一样。与大多数电子表格不同,这些索引值实际上可用于引用行。...df.sort_values("col1", inplace=True) 数据输入和输出 1. 利用值构造一个数据框DataFrame 在Excel电子表格中,值可以直接输入到单元格中。...在 Pandas 中,您使用特殊方法从/向 Excel 文件读取和写入。 让我们首先基于上面示例中的数据框,创建一个新的 Excel 文件。 tips.to_excel("....列的选择 在Excel电子表格中,您可以通过以下方式选择所需的列: 隐藏列; 删除列; 引用从一个工作表到另一个工作表的范围; 由于Excel电子表格列通常在标题行中命名,因此重命名列只需更改第一个单元格中的文本即可...填充柄 在一组特定的单元格中按照设定的模式创建一系列数字。在电子表格中,这将在输入第一个数字后通过 shift+drag 或通过输入前两个或三个值然后拖动来完成。

    19.6K20
    领券