首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    删除重复值,不只Excel,Python pandas更行

    标签:Python与Excel,pandas 在Excel中,我们可以通过单击功能区“数据”选项卡上的“删除重复项”按钮“轻松”删除表中的重复项。确实很容易!...import pandas as pd df = pd.read_excel(‘D:\用户-1.xlsx’) 图2 快速观察上述小表格: 第1行和第5行包含完全相同的信息。...第3行和第4行包含相同的用户名,但国家和城市不同。 删除重复值 根据你试图实现的目标,我们可以使用不同的方法删除重复项。最常见的两种情况是:从整个表中删除重复项或从列中查找唯一值。...图4 这一次,我们输入了一个列名“用户姓名”,并告诉pandas保留最后一个的重复值。现在pandas将在“用户姓名”列中检查重复项,并相应地删除它们。...如果我们指定inplace=True,那么原始的df将替换为新的数据框架,并删除重复项。 图5 在列表或数据表列中查找唯一值 有时,我们希望在数据框架列的列表中查找唯一值。

    6.1K30

    Python-科学计算-pandas-14-df按行按列进行转换

    系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲...Python的科学计算及可视化 今天讲讲pandas模块 将Df按行按列进行转换 Part 1:目标 最近在网站开发过程中,需要将后端的Df数据,渲染到前端的Datatables,前端识别的数据格式有以下特征...- 数据格式为一个列表 - 列表中每一个元素为一个字典,每个字典对应前端表格的一行 - 单个字典的键为前端表格的列名,字典的值为前端表格每列取的值 简单来说就是要将一个Df转换为一个列表,该列表有特定的格式...n按行输出") list_fields = df_1.to_dict(orient='records') print(list_fields) 代码截图 ?...表示记录,对应数据库的行 Part 4:延伸 以上方法将Df按行转换,那么是否可以按列进行转换呢?

    1.9K30

    VBA:基于指定列删除重复行

    文章背景:在工作生活中,有时需要进行删除重复行的操作。比如样品测试时,难免存在复测数据,一般需要保留最后测试的数据。...之前通过拷贝行的方式保留最后一行的数据(参见文末的延伸阅读1),但运行效率较低。目前通过借助数组和字典达到删除重复行的效果。...1 基于指定列,保留最后一行的数据2 基于指定列,保留最后一行的数据,同时剔除不需要的列3 效果演示 1 基于指定列,保留最后一行的数据 想要实现的效果:在原来测试数据的基础上,基于B列,如果存在重复的数据...VBA代码如下: Sub Delete_Duplicate1() '基于指定列,删除重复行,保留最后出现的行数据。...,保留最后一行的数据,同时剔除不需要的列 想要实现的效果:针对原有的测试数据,基于B列,如果存在重复的数据,保留最后一行的数据;这里不需要E列的数据。

    3.4K30

    对比Excel,Python pandas删除数据框架中的行

    标签:Python与Excel,pandas 对于Excel来说,删除行是一项常见任务。本文将学习一些从数据框架中删除行的技术。...准备数据框架 我们将使用前面系列中用过的“用户.xlsx”来演示删除行。 图1 注意上面代码中的index_col=0?如果我们将该参数留空,则索引将是基于0的索引。...使用.drop()方法删除行 如果要从数据框架中删除第三行(Harry Porter),pandas提供了一个方便的方法.drop()来删除行。...inplace:告诉pandas是否应该覆盖原始数据框架。 按名称删除行 图2 我们跳过了参数axis,这意味着将其保留为默认值0或行。因此,我们正在删除索引值为“Harry Porter”的行。...图3 如果要覆盖原始数据框架df,使用以下2种方法: 将结果数据框架赋值回原始df 在drop()方法内设置place=True 图4 按位置删除行 我们还可以使用行(索引)位置删除行。

    4.6K20

    pandas数据清洗-删除没有序号的所有行的数据

    pandas数据清洗-删除没有序号的所有行的数据 问题:我的数据如下,要求:我想要的是:有序号的行留下,没有序号的行都不要 图片 【代码及解析】 import pandas as pd filepath...="E:/yhd_python/pandas.read_excel/student.xlsx" df=pd.read_excel(filepath,sheet_name='Sheet1',skiprows...=1) df.tail() 先导入pands包,用read_excel读取文件,工作表为“Sheet1”,标题在第二行,所以跳过一行skiprows=1 方法:read_excel pd.read_excel...默认0,即取第一行 skiprows:省略指定行数的数据 skip_footer:省略从尾部数的行数据 **继续** lst=[] for index,row in df.iterrows():...df1=df.drop(labels=lst) 删除l列表lst存储的所有行号 【效果图】: 完成

    1.6K10

    使用pandas的话,如何直接删除这个表格里面X值是负数的行?

    一、前言 前几天在Python白银交流群【空翼】问了一个pandas处理Excel数据的问题,提问截图如下: 下图是他的原始数据部分截图: 二、实现过程 看上去确实是两列,但是X列里边又暗藏玄机,如果只是单纯的针对这一列全部是数值型的数据进行操作...【Jun.】给了两个代码,确实可以,分别是df=df[df["X"]>=0]和df=df[~df["X"]行,【Python进阶者】也给了一个答案,代码如下所示: import pandas as pd df = pd.read_excel('U.xlsx') #...而他自己的数据还并不是那么的工整,部分数据入下图所示,可以看到130-134行的情况。...其中有一行代码不太好理解,解析如下: 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

    2.9K10

    资源 | 23种Pandas核心操作,你需要过一遍吗?

    Pandas 是基于 NumPy 构建的库,在数据处理方面可以把它理解为 NumPy 加强版,同时 Pandas 也是一项开源项目。...它基于 Cython,因此读取与处理数据非常快,并且还能轻松处理浮点数据中的缺失数据(表示为 NaN)以及非浮点数据。...(7)列出所有列的名字 df.columns 基本数据处理 (8)删除缺失数据 df.dropna(axis=0, how='any') 返回一个 DataFrame,其中删除了包含任何 NaN 值的给定轴...(11)删除特征 df.drop('feature_variable_name', axis=1) axis 选择 0 表示行,选择表示列。...的第三行为「size」: df.rename(columns = {df.columns[2]:'size'}, inplace=True) (18)取某一行的唯一实体 下面代码将取「name」行的唯一实体

    1.8K20

    Pandas必会的方法汇总,数据分析必备!

    columns和index为指定的列、行索引,并按照顺序排列 举例:用pandas创建数据表: df = pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006...() 查询数据的前五行 2 df.tail() 查询数据的末尾5行 3 pandas.qcut() 基于秩或基于样本分位数将变量离散化为等大小桶 4 pandas.cut() 基于分位数的离散化函数 5...9 .drop() 删除Series和DataFrame指定行或列索引。 10 .loc[行标签,列标签] 通过标签查询指定的数据,第一个值为行标签,第二值为列标签。...2 .duplicated() 判断各行是否是重复行,返回一个布尔型Series。 3 .drop_duplicates() 删除重复行,返回删除后的DataFrame对象。...举例:删除后出现的重复值: df['city'].drop_duplicates() 结语 文章中总结的是都是一些Pandas常用的方法,至于一些基础的概念还需要你学到Pandas的时候去理解,例如Series

    5.9K20

    Python代码实操:详解数据清洗

    (df) 通过Pandas生成一个6行4列,列名分别为'col1'、'col2'、'col3'、'col4'的数据框。...丢弃缺失值 df2 = df.dropna() # 直接丢弃含有NA的行记录 print(df2) # 打印输出 通过Pandas默认的 dropna() 方法丢弃缺失值,返回无缺失值的数据记录...删除带有异常值所在的记录行 df_drop_outlier = df[df_zscore['col1'] == False] print(df_drop_outlier) 本段代码里我们直接使用了Pandas...(['col1', 'col2'])) # 删除数据记录中指定列(col1/col2)值相同的记录 该操作的核心方法是 df.drop_duplicates(),该方法的作用是基于指定的规则判断为重复值之后...,index为2的记录行被删除: col1 col2 0 a 3 1 b 2 3 c 2 删除数据记录中col2值相同的记录,index为2和3的记录行被删除

    5K20

    资源 | 23种Pandas核心操作,你需要过一遍吗?

    Pandas 是基于 NumPy 构建的库,在数据处理方面可以把它理解为 NumPy 加强版,同时 Pandas 也是一项开源项目。...它基于 Cython,因此读取与处理数据非常快,并且还能轻松处理浮点数据中的缺失数据(表示为 NaN)以及非浮点数据。...(7)列出所有列的名字 df.columns 基本数据处理 (8)删除缺失数据 df.dropna(axis=0, how='any') 返回一个 DataFrame,其中删除了包含任何 NaN 值的给定轴...(11)删除特征 df.drop('feature_variable_name', axis=1) axis 选择 0 表示行,选择表示列。...的第三行为「size」: df.rename(columns = {df.columns[2]:'size'}, inplace=True) (18)取某一行的唯一实体 下面代码将取「name」行的唯一实体

    2.9K20

    资源 | 23种Pandas核心操作,你需要过一遍吗?

    Pandas 是基于 NumPy 构建的库,在数据处理方面可以把它理解为 NumPy 加强版,同时 Pandas 也是一项开源项目。...它基于 Cython,因此读取与处理数据非常快,并且还能轻松处理浮点数据中的缺失数据(表示为 NaN)以及非浮点数据。...(7)列出所有列的名字 df.columns 基本数据处理 (8)删除缺失数据 df.dropna(axis=0, how='any') 返回一个 DataFrame,其中删除了包含任何 NaN 值的给定轴...(11)删除特征 df.drop('feature_variable_name', axis=1) axis 选择 0 表示行,选择表示列。...的第三行为「size」: df.rename(columns = {df.columns[2]:'size'}, inplace=True) (18)取某一行的唯一实体 下面代码将取「name」行的唯一实体

    1.4K40

    我的Pandas学习经历及动手实践

    什么是Pandas?熊猫? Pandas 可以说是基于 NumPy 构建的含有更高级数据结构和分析能力的工具包, 实现了类似Excel表的功能,可以对二维数据表进行很方便的操作。...基于这两种数据结构,Pandas 可以对数据进行导入、清洗、处理、统计和输出。 快速掌握Pandas,就要快速学会这两种核心数据结构。 2....(2.1)删除 DataFrame 中的不必要的列或行 Pandas 提供了一个便捷的方法 drop() 函数来删除我们不想要的列或行 df2 = df2.drop(columns=['Chinese'...#删除左右两边空格 df2['Chinese']=df2['Chinese'].map(str.strip) #删除左边空格 df2['Chinese']=df2['Chinese'].map(str.lstrip...) #删除右边空格 df2['Chinese']=df2['Chinese'].map(str.rstrip) 如果数据里有某个特殊的符号,我们想要删除怎么办?

    1.8K10

    Pandas快速上手!

    什么是Pandas?熊猫? Pandas 可以说是基于 NumPy 构建的含有更高级数据结构和分析能力的工具包, 实现了类似Excel表的功能,可以对二维数据表进行很方便的操作。...基于这两种数据结构,Pandas 可以对数据进行导入、清洗、处理、统计和输出。 快速掌握Pandas,就要快速学会这两种核心数据结构。 2....(2.1)删除 DataFrame 中的不必要的列或行 Pandas 提供了一个便捷的方法 drop() 函数来删除我们不想要的列或行 df2 = df2.drop(columns=['Chinese'...#删除左右两边空格 df2['Chinese']=df2['Chinese'].map(str.strip) #删除左边空格 df2['Chinese']=df2['Chinese'].map(str.lstrip...) #删除右边空格 df2['Chinese']=df2['Chinese'].map(str.rstrip) 如果数据里有某个特殊的符号,我们想要删除怎么办?

    1.3K50
    领券