首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas从入门到放弃

,获取的永远是列,索引只会被认为是列索引,而不是行索引;相反,第二种方式没有此类限制,故在使用中容易出现问题。...(4)DataFrame 数据查询 数据查询的方法可以分为以下五类:按区间查找、按条件查找、按数值查找、按列表查找、按函数查找。 这里以df.loc方法为例,df.iloc方法类似。...:] 还可以编写lambda函数来查找,获取在x、z轴正半轴的点的数据 df.loc[lambda df : (df['z'] > 0) & (df['x'] > 0)] (5)DataFrame数据统计...2)Numpy只能存储相同类型的ndarray,Pandas能处理不同类型的数据,例如二维表格中不同列可以是不同类型的数据,一列为整数一列为字符串。...4)Pansdas是基于Numpy的一种工具,该工具是为了解决数据分析任务而创建的。Pandas提供了大量快速便捷地处理数据的函数和方法。

9610

Pandas 功能介绍(二)

“by”参数可以使用字符串,也可以是列表,ascending 的参数也可以是单个值或者列表 ascending 默认值是 True 列中的每行上的 apply 函数 在前一篇的增加列的部分,根据风速计算人体感觉是否舒适...,为了功能的演示,在这里使用 DataFrame 的 apply 方法,他会在指定列的每个值上执行。...详见代码: 均值和标准差 我们通过 describe 方法查看的统计信息中均值和方差都是按照列统计呢,这里要说的,既可以按照列,还可以按照行 均值,行 df.mean(axis=0),列df.mean(...df 拼接起来 垂直(行)拼接,pd.concat([df1,df2],axis=0),水平(列)拼接,pd.concat([df1,df2],axis=1) 基于索引关键字合并 Pandas 还提供了像...datetime') 在 DataFrame 中查找 NaN 每行有多少 NaN,df.isnull().sum() Dataframe 中 NaN 的总数,上面统计出来的数量求和,df.isnull(

1.6K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas 功能介绍(二)

    默认值是 True 列中的每行上的 apply 函数 在前一篇的增加列的部分,根据风速计算人体感觉是否舒适,为了功能的演示,在这里使用 DataFrame 的 apply 方法,他会在指定列的每个值上执行...详见代码: image.png 均值和标准差 我们通过 describe 方法查看的统计信息中均值和方差都是按照列统计呢,这里要说的,既可以按照列,还可以按照行 均值,行 df.mean(axis=0)...在两个 df 的结果一致的情况下,我们可以简单两个 df 拼接起来 垂直(行)拼接,pd.concat([df1,df2],axis=0),水平(列)拼接,pd.concat([df1,df2],axis...=1) 基于索引关键字合并 Pandas 还提供了像 SQL 一样的连接,内联,外联,左联,右联 作为我们的示例数据,可以唯一标识一行的就是 Datatime 列 merged_df = df_1.merge...(df_2, how='left', on='datetime') 在 DataFrame 中查找 NaN 每行有多少 NaN,df.isnull().sum() Dataframe 中 NaN 的总数

    1.2K70

    PySpark SQL——SQL和pd.DataFrame的结合体

    例如Spark core中的RDD是最为核心的数据抽象,定位是替代传统的MapReduce计算框架;SQL是基于RDD的一个新的组件,集成了关系型数据库和数仓的主要功能,基本数据抽象是DataFrame...注:由于Spark是基于scala语言实现,所以PySpark在变量和函数命名中也普遍采用驼峰命名法(首单词小写,后面单次首字母大写,例如someFunction),而非Python中的蛇形命名(各单词均小写...Column:DataFrame中每一列的数据抽象 types:定义了DataFrame中各列的数据类型,基本与SQL中的数据类型同步,一般用于DataFrame数据创建时指定表结构schema functions...as的用法,实际上as即为alias的简写,这里的alias的功能与as也完全一致,即对一个对象起别名,除了对单列起别名外也支持对整个DataFrame对象起别名 df.select('*', (df.age...提取相应数值,timestamp转换为时间戳、date_format格式化日期、datediff求日期差等 这些函数数量较多,且与SQL中相应函数用法和语法几乎一致,无需全部记忆,仅在需要时查找使用即可

    10K20

    数据导入与预处理-课程总结-04~06章

    header:表示指定文件中的哪一行数据作为DataFrame类对象的列索引,默认为0,即第一行数据作为列索引。...header:表示指定文件中的哪一行数据作为DataFrame类对象的列索引。 names:表示DataFrame类对象的列索引列表。...df.duplicated() # 返回boolean数组 # 查找重复值 # 将全部重复值所在的行筛选出来 df[df.duplicated()] # 查找重复值|指定 # 上面是所有列完全重复的情况...,包括: 实体识别 冗余属性识别 元组重复等 3.2 基于Pandas实现数据集成 pandas中内置了许多能轻松地合并数据的函数与方法,通过这些函数与方法可以将Series类对象或DataFrame...join 最简单,主要用于基于索引的横向合并拼接 merge 最常用,主要用于基于指定列的横向合并拼接 concat最强大,可用于横向和纵向合并拼接 append,主要用于纵向追加 3.3 数据变换

    13.1K10

    第四范式OpenMLDB: 拓展Spark源码实现高性能Join

    Spark本身实现也非常高效,基于Antlr实现的了标准ANSI SQL的词法解析、语法分析,还有在Catalyst模块中实现大量SQL静态优化,然后转成分布式RDD计算,底层数据结构是使用了Java...基于Spark的LastJoin实现 由于LastJoin类型并非ANSI SQL中的标准,因此在SparkSQL等主流计算平台中都没有实现,为了实现类似功能用户只能通过更底层的DataFrame或RDD...基于Spark算子实现LastJoin的思路是首先对左表添加索引列,然后使用标准LeftOuterJoin,最后对拼接结果进行reduce和去掉索引行,虽然可以实现LastJoin语义但性能还是有很大瓶颈...,由于OpenMLDB底层是基于C++实现,因此多个join condition的表达式都要转成Spark表达式(封装成Spark Column对象),然后调用Spark DataFrame的join函数即可...JIT来实现的,因此我们需要修改codegen成Java代码字符串的逻辑,在codegenOuter函数中,保留原来LeftOuterJoin的实现,并且使用前面的参数来区分是否使用新的join type

    1.1K20

    盘点66个Pandas函数,轻松搞定“数据清洗”!

    Pandas 是基于NumPy的一种工具,该工具是为解决数据分析任务而创建的。它提供了大量能使我们快速便捷地处理数据的函数和方法。...df["gender"].unique() df["gender"].nunique() 输出: 在数值数据操作中,apply()函数的功能是将一个自定义函数作用于DataFrame的行或者列;applymap...()函数的功能是将自定义函数作用于DataFrame的所有元素。...split 分割字符串,将一列扩展为多列 strip、rstrip、lstrip 去除空白符、换行符 findall 利用正则表达式,去字符串中匹配,返回查找结果的列表 extract、extractall...今天我们盘点了66个Pandas函数合集,但实际还有很多函数在本文中没有介绍,包括时间序列、数据表的拼接与连接等等。此外,那些类似describe()这种大家非常熟悉的方法都省去了代码演示。

    3.8K11

    数据专家最常使用的 10 大类 Pandas 函数 ⛵

    以下函数很常用:duplicated: 识别DataFrame中是否有重复,可以指定使用哪些列来标识重复项。drop_duplicates:从 DataFrame 中删除重复项。...图片 9.合并数据集我们对多个数据集Dataframe合并的时候,可能用到下列的函数(包括表关联和拼接)。merge:基于某些字段进行表关联。...重要的参数包括 on(连接字段),how(例如内连接或左连接,或外连接),以及 suffixes(相同字段合并后的后缀)。concat:沿行或列拼接DataFrame对象。...图片 10.分组统计我们经常会需要对数据集进行分组统计操作,常用的函数包括:groupby:创建一个 GroupBy 分组对象,可以基于一列或多列进行分组。...其他的常用统计信息包括标准差std。size: 分组的频率agg:聚合函数。包括常用的统计方法,也可以自己定义。

    3.6K21

    大数据开发!Pandas转spark无痛指南!⛵

    ('seniority', seniority) dataframe拼接 2个dataframe - pandas# pandas拼接2个dataframedf_to_add = pd.DataFrame...,dfn]df = unionAll(*dfs) 简单统计Pandas 和 PySpark 都提供了为 dataframe 中的每一列进行统计计算的方法,可以轻松对下列统计值进行统计计算:列元素的计数列元素的平均值最大值最小值标准差三个分位数...在 Pandas 中,要分组的列会自动成为索引,如下所示:图片要将其作为列恢复,我们需要应用 reset_index方法:df.groupby('department').agg({'employee'...我们经常要进行数据变换,最常见的是要对「字段/列」应用特定转换,在Pandas中我们可以轻松基于apply函数完成,但在PySpark 中我们可以使用udf(用户定义的函数)封装我们需要完成的变换的Python...函数。

    8.2K72

    11,二维dataframe —— 类SQL操作

    〇,pandas简介 pandas是python数据分析领域最为经典的库之一,基于numpy构建。 pandas中常用的数据结构有: 1,Series:一维数组,有index。...Series中只允许存储同种类型数据。 2,DataFrame:二维的表格型数据结构。可以将DataFrame理解为Series的容器。 3,Panel :三维的数组。...你可以像操作excel表一样操作DataFrame:插入行和列,排序,筛选…… 你可以像操作SQL数据表一样操作DataFrame:查询,分组,连接…… 本节我们介绍DataFrame的类SQL操作。...right:右连接,以右表索引或key列为序,查找左表信息, 未找到置nan。 1,使用 concat 函数合并 ? ? ? ? ? ? 2,使用 join 方法拼接 ? ? ? ? ? ?...三,表分组 表分组类似SQL中的 select ... group by ...操作,可以代替excel表格中的数据透视表功能。 ? 1,分组对象性质 ? ? ? ?

    81720

    Pandas

    [:][m:n] DataFrame.head/tail():访问前/后五行 整数标签的特殊情况 为了防止计算机不知道用户输入的索引是基于位置还是基于标签的,pd 整数标签的索引是基于标签的,也就是说我们不能像列表一样使用...,返回的还是一个 dataframe,值有更改) 查找是否存在重复数据:df.duplicated()(返回布尔值,默认将已经观察到先前有之后的行返回 True 这个需要调整 keep 函数,默认查找全部列...中的列名作为列名称为’variable’的列的取值的,'value’列为原列对应取值的一个df。...在正常使用过程中,agg 函数和 aggregate 函数对 DataFrame 对象操作时功能几乎完全相同,因此只需要掌握其中一个函数即可。它们的参数说明如下表。...窗口函数 在实际应用过程中,我们可能会存在对整个 df 的局部数据进行统计分析的场景,这时就需要用到所谓的“窗口函数”,可以理解为在整体数据集上创建窗口来进行运算,pd 中提供的几种窗口函数有: rolling

    9.2K30

    pandas多级索引的骚操作!

    我们知道dataframe是一个二维的数据表结构,通常情况下行和列索引都只有一个。但当需要多维度分析时,我们就需要添加多层级索引了。在关系型数据库中也被叫做复合主键。...,pro], names=['年份','专业']) # 对df的行索引、列索引赋值 df.index = mindex df.columns = mcol display(df) 02 从数据中获取多级索引...# 按层级获取索引 df.index.get_level_values(level=1) # 查找行的二级索引 df.index.get_level_values(level=0) # 查找行的一级索引...df.columns.get_level_values(level=1) # 查找列的二级索引 df.columns.get_level_values(level=0) # 查找列的一级索引 02...07 多级索引拼接 除此外,对于多层级索引而言,我们有时需要将多层级进行拼接,此时我们可以借助to_flat_index函数,它可以将多级索引放在一起(相当于from_tuples的逆操作)。

    1.5K31

    Pandas与GUI界面的超强结合,爆赞!

    ,有位粉丝提到了一个牛逼的库,它巧妙的将Pandas与GUI界面结合起来,使得我们可以借助GUI界面来分析DATaFrame数据框。 基于此,我觉得有必要写一篇文章,再为大家做一个学习分享。...统计汇总 仔细观察下图,pandasgui会自动按列统计每列的数据类型、行数、非重复值、均值、方差、标准差 、最小值、最大值。 image.png 3....过滤 我们直接在Filters输入框中,输入a>=2,如下图所示。 image.png 输入公式后,接着点击Enter,即可完成对列的筛选。 image.png 4....交互式绘图 这里我们定义了一个3行2列的DataFrame,以a为横坐标,b为纵坐标进行绘图。...重塑功能 pandasgui还支持数据重塑,像数据透视表pivot、纵向拼接concat、横向拼接merge、宽表转换为长表melt等函数。 image.png 6.

    1.9K20

    Numpy和pandas的使用技巧

    ()函数先创建一维数组,然后用reshape函数设置维度 创建未初始化的数组,empty(shape,dtype,order)形状,类型,行列优先,col是列,row是行 2、数组的几个重要属性,...给定均值/标准差/维度的正态分布np.random.normal(1.75, 0.1, (2, 3)) 4、索引和查找, # 花式索引举例: A[行索引,列索引] ex: A...) 或 ndarray.T 》》》》》》》》》》》》》》》》》》》 矩阵垂直拼接 np.vstack((v1,v2)) vertical 垂直,stack堆叠、累加 矩阵水平拼接 np.hstack...,order=)数组,新形状,"C"-按行、"F"-按列、"A"-原顺序、"k"-元素在内存中痴线顺序 △ n.flat()数组元素迭代器。...i in df.columns: print(i) 获取dataframe的Series 一行 a.iloc[0,:] 一列 a.iloc[:,1] a["feature_1"] 合并dataframe

    3.5K30

    数据导入与预处理-第6章-01数据集成

    2 基于Pandas实现数据集成 pandas中内置了许多能轻松地合并数据的函数与方法,通过这些函数与方法可以将Series类对象或DataFrame类对象进行符合各种逻辑关系的合并操作,合并后生成一个整合的...常用的合并数据的函数包括: 2.1 主键合并数据merge 主键合并数据类似于关系型数据库的连接操作,主要通过指定一个或多个键将两组数据进行连接,通常以两组数据中重复的列索引为合并键。...没有A、B两个列索引,所以这两列中相应的位置上填充了NaN。...lsuffix: 左DataFrame中重复列的后缀 rsuffix: 右DataFrame中重复列的后缀 sort: 按字典序对结果在连接键上排序 join方式为按某个相同列进行join: score_df...join 最简单,主要用于基于索引的横向合并拼接 merge 最常用,主要用于基于指定列的横向合并拼接 concat最强大,可用于横向和纵向合并拼接 append,主要用于纵向追加 3 思考题

    2.6K20

    最全面的Pandas的教程!没有之一!

    分组统计 Pandas 的分组统计功能可以按某一列的内容对数据行进行分组,并对其应用统计函数,比如求和,平均数,中位数,标准差等等… 举例来说,用 .groupby() 方法,我们可以对下面这数据表按...最后,on='Key' 代表需要合并的键值所在的列,最后整个表格会以该列为准进行归并。 对于两个都含有 key 列的 DataFrame,我们可以这样归并: ?...比如在下面这个 DataFrame 里,查找 col2 列中所有不重复的值: ? 除了列出所有不重复的值,我们还能用 .nunique() 方法,获取所有不重复值的个数: ?...比如,我们先定义一个 square() 函数,然后对表中的 col1 列应用这个函数: ? 在上面这个例子中,这个函数被应用到这一列里的每一个元素上。同样,我们也可以调用任意的内置函数。...查找空值 假如你有一个很大的数据集,你可以用 Pandas 的 .isnull() 方法,方便快捷地发现表中的空值: ?

    26K64

    pandas中的字符串处理函数

    在pandas中,通过DataFrame来存储文件中的内容,其中最常见的数据类型就是字符串了。针对字符串,pandas提供了一系列的函数,来提高操作效率。...这些函数可以方便的操作字符串类型的Series对象,对数据框中的某一列进行操作,这种向量化的操作提高了处理效率。pandas中的字符串处理函数以str开头,常用的有以下几种 1....拼接 通过str.cat函数来实现,用法如下 >>> import pandas as pd >>> df = pd.DataFrame(['A', 'B', 'C', 'D']) >>> df...Name: 0, dtype: object # 当拼接的对象为一个数据框时,将数据框的所有列都进行拼接 >>> df[1] = df[0].str.cat(['1','2', '3', '4'])...判断是否包含子字符串 通过str.contain函数来实现局部查找,类似re.search函数,用法如下 >>> df = pd.DataFrame(['A_1_1', 'B_2_1', 'C_3_1'

    2.8K30

    Pandas数据合并与拼接的5种方法

    该函数的典型应用场景是,针对同一个主键存在两张不同字段的表,根据主键整合到一张表里面。...参数介绍: left和right:两个不同的DataFrame; how:连接方式,有inner、left、right、outer,默认为inner; on:指的是用于连接的列索引名称,必须存在于左右两个...DataFrame中,如果没有指定且其他参数也没有指定,则以两个DataFrame列名交集作为连接键; left_on:左侧DataFrame中用于连接键的列名,这个参数左右列名不同但代表的含义相同时非常的有用...; right_on:右侧DataFrame中用于连接键的列名; left_index:使用左侧DataFrame中的行索引作为连接键; right_index:使用右侧DataFrame中的行索引作为连接键...总结 1、join 最简单,主要用于基于索引的横向合并拼接 2、merge 最常用,主要用于基于指定列的横向合并拼接 3、concat最强大,可用于横向和纵向合并拼接 4、append,主要用于纵向追加

    29.1K32

    Python数据分析——以我硕士毕业论文为例

    众所周知,Python除了不会生孩子别的都会~ Introduction / 引言 大学期间用来打发无聊时间学的Python没想到竟然在写毕业论文的时候用处这么大,整个硕士论文所做研究,从前期的数据整理...数据表合并 首先遇到的第一个需求就是,所有样本点的列变量存储在不同的数据表中,比如,样本点的指标分为上覆水的指标与沉积物的指标两部分,分别存储在两个或者多个数据表中,那么如何将两个或者多个数据表进行合并呢...Category对象后,如果数据表中没有某个Category,但是绘图的时候还是会占用一个位置,下面举例说明: 这个数据表中的Period列已经不包含Level Season的数据,但是使用.value_counts...图中可以看出,还生成了一个拼接的一元一次方程,方程的拼接可以直接用我写好的函数,函数的具体用法以及讲解已经在注释里说的很清楚了: Tips / 提示 函数的主要作用就是传入np.polyfit(X, Y...def get_skip_rows(path): """ 读取txt文件,并在文件中查找含有'Data Points'的行,数据矩阵就在这一行的下面 :param path: 文件路径

    3.4K20
    领券