好不容易学了一门编程语言 Python,又懂一点 Excel 操作,感觉自己无所不能了。直到有一天遇到了凑数最优问题,看似很简单,但始终无法解决。
回溯法的基本思想是构建一个解的空间树,通过深度优先搜索来遍历所有可能的解。在遍历的过程中,如果发现当前部分解不能构成最终解,就回溯到上一步继续尝试其他可能的解。这种方法特别适用于组合、排列、子集等问题。
线性规划是一种数学优化方法,用于求解线性目标函数在线性约束条件下的最优解。它在运筹学、经济学、工程等领域得到广泛应用。本文将深入讲解Python中的线性规划,包括基本概念、线性规划问题的标准形式、求解方法,并使用代码示例演示线性规划在实际问题中的应用。
笔者最近在做通过符号执行(Symbolic Execution)与约束求解器(Constraint Solver)来自动生成 P4 程序的测试用例,符号执行是一种重要的形式化验证(Formal Verification)方法和软件分析技术。
集成电路板等电子产品生产中,控制回焊炉各部分保持工艺要求的温度对产品质量至关重要(点击文末“阅读原文”了解更多)。
全局优化与局部优化的理念完全不同(全局优化求解器通常被称为随机求解器,试图避免局部最优点)。
回溯算法是一种经典的算法技术,它在解决组合、排列、子集和图问题等方面表现出色。本篇博客将详细解释回溯算法的原理,探讨回溯算法的应用,并通过实例代码演示它在问题求解中的灵活运用。
大家好,之前在论坛里问了不少有关线性代数计算库的问题,现在姑且来交个作业,顺便给出一些用Rust做科学计算的个人经验。结论我就直接放在开头了。
Lingo软件是一款非常强大的线性规划(LP)和整数规划(IP)求解器,它可以应用于各个领域,包括运输、制造、物流等。在这篇文章中,我们将介绍Lingo软件的独特功能,并通过一个实际案例来说明其在实践中的应用。
当你在逛超市的时候,你有没有想过商场里的商品的摆放方式有什么讲究?随着新零售时代的到来,超市如今已经开始逐渐转向精细化运营时代。面对成千上万商品,通过数据收集和分析技术不断提升销售效率是零售超市们如今最关心的事情。其中,如何让货架空间最大化是其中的关键因素之一。数据侠Deepesh Singh使用python和贪婪算法告诉你:货架空间优化的奥义就藏在那些简单的数据里。
前言 哈啰,又见面啦 大家在编写启发式算法程序解决NP难问题时 有没有觉得会很耗时间呀 今天小编给大家介绍 两个可以解决各类VRP问题的工具(即VRP求解器) 一起来看看吧 1 求解器介绍 1.1 Jsprit 1.1.1 Jsprit简介 Jsprit 是一个基于 java 的开源工具包,用于解决旅行商问题 (Traveling Salesman Problem,简称TSP) 和多种车辆路径问题(Vehicle Routing Problem, 简称VRP)。Jsprit是轻量级、灵活且易于使用的V
数据分析的数据模型是决策支持系统的重要组成部分,它通过对大量数据的收集、整理、分析和挖掘,为企业提供有价值的信息,以支持企业的战略规划和日常运营。数据模型的选择和应用,直接关系到数据分析的准确性和有效性,进而影响企业的决策质量和市场竞争力。
选自chaitjo's blog 作者:Chaitanya K. Joshi , Rishabh Anand 机器之心编译 机器之心编辑部 最近,针对旅行推销员等组合优化问题开发神经网络驱动的求解器引起了学术界的极大兴趣。这篇博文介绍了一个神经组合优化步骤,将几个最近提出的模型架构和学习范式统一到一个框架中。透过这一系列步骤,作者分析了深度学习在路由问题方面的最新进展,并提供了新的方向来启发今后的研究,以创造实际的价值。 组合优化问题的背景 组合优化是数学和计算机科学交叉领域的一个实用领域,旨在解决 N
来源:机器之心本文约2600字,建议阅读9分钟本文分析了深度学习在路由问题方面的最新进展,并提供了新的方向来启发今后的研究。 最近,针对旅行推销员等组合优化问题开发神经网络驱动的求解器引起了学术界的极大兴趣。这篇博文介绍了一个神经组合优化步骤,将几个最近提出的模型架构和学习范式统一到一个框架中。透过这一系列步骤,作者分析了深度学习在路由问题方面的最新进展,并提供了新的方向来启发今后的研究,以创造实际的价值。 组合优化问题的背景 组合优化是数学和计算机科学交叉领域的一个实用领域,旨在解决 NP 难的约束优化
选自arXiv 作者:João F. Henriques等 机器之心编译 参与:Huiyuan Zhuo、思源 牛顿法等利用二阶梯度信息的方法在深度学习中很少有应用,我们更喜欢直接使用一阶梯度信息求解最优参数。本论文提出了一种新型基于二阶信息的最优化方法,它的内存占用与带动量的 SGD 一样小,但当收敛速度却比只使用一阶信息的最优化方法快。 1 引言 随机梯度下降(SGD)和反向传播 [9] 是现今深度网络训练的算法核心。深度学习的成功证明了这种组合的有效性,它已经成功地运用在各种具有大型数据集和极深网络的
背包问题是计算机科学中一个重要的组合优化问题,动态规划是解决该问题的高效算法技术。本篇博客将重点介绍背包问题的动态规划解法,包括状态定义、状态转移方程、边界条件和状态转移过程,并通过实例代码演示动态规划算法的实现,每行代码都配有详细的注释。
随着物流和运输行业的快速发展,车辆路径规划问题(VRP)成为了一个重要的研究领域。Python pyvrp库是一个用于解决车辆路径规划问题的强大工具,它提供了多种算法和方法,帮助用户高效地解决VRP问题。本文将详细介绍pyvrp库,包括其安装方法、主要特性、基本和高级功能,以及实际应用场景,帮助大家全面了解并掌握该库的使用。
MOSEK是由丹麦MOSEK ApS公司开发的一款数学优化求解器,也是公认的求解二次规划、二阶锥规划和半正定规划问题最快的求解器之一,广泛应用于金融、保险、能源等领域。杉数科技是MOSEK在中国大陆唯一官方授权销售商,承担中国市场的销售和售后服务工作。本篇主要介绍MOSEK的总体性能,在金融中一些解决问题的技巧和应用,杉数科技将和艾悉资产在近期推出一个介绍性文档,敬请关注!(详情请登陆 https://www.shanshu.ai/product/mosek)
作者:Riley Simmons-Edler、Anders Miltner、Sebastian Seung
本文总结了常用的数学模型方法和它们的主要用途,主要包括数学和统计上的建模方法,关于在数学建模中也挺常用的机器学习算法暂时不作补充,以后有时间就补。至于究竟哪个模型更好,需要用数据来验证,还有求解方法也不唯一,比如指派问题,你可以用线性规划OR动态规划OR整数规划OR图与网络方法来解。
动态规划是一种常用且高效的算法技术,用于解决一类具有重叠子问题和最优子结构性质的问题。在本篇博客中,我们将重点介绍动态规划的基本概念与特点,探讨其在解决典型问题中的应用,并通过实例代码演示动态规划算法的实现,每行代码都配有详细的注释。
本文由CDA作者库成员HarryZhu翻译,并授权发布。 CDA作者库凝聚原创力量,只做更有价值的分享。 概述 本文将探究一个被称为二次规划的优化问题,这是一种特殊形式的非线性约束优化问题。二次规划在
有好些天没写博客了,最近一直忙着在看论文,解模型,着实有点头痛。今天趁着又到周末了更一帖(其实是模型解不下去了…),这次来说一下一个在信号分析与数据挖掘领域颇为使实用的算法,独立成分分析(ICA),这个算法的求解方式会让人决定新奇而有所启发,可能会给你带来新的思路,这一篇算法已经有很多大神写过了,比如: http://blog.csdn.net/neal1991/article/details/45128193 http://blog.csdn.net/u013802188/article/details/40923749 我在这里略作补充,说一下自己的见解,有不合适的地方欢迎大家指出
Z3是Microsoft Research开发的高性能定理证明器。Z3拥有者非常广泛的应用场景:软件/硬件验证和测试,约束求解,混合系统分析,安全性研究,生物学研究(计算机分析)以及几何问题。Z3Py是使用Python脚本来解决一些实际问题。
根据样本数据是否带有标签值,可以将机器学习算法分成有监督学习和无监督学习两类。有监督学习的样本数据带有标签值,它从训练样本中学习得到一个模型,然后用这个模型对新的样本进行预测推断。有监督学习的典型代表是分类问题和回归问题。
社会智能化的发展趋势和日益多元化的实际需求,奠定了物流运输行业对于实现智能规划的需求,车辆路径规划问题是其中的重点研究对象。
大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说建模 python_整数规划建模例题,希望能够帮助大家进步!!!
分治法更注重将问题分解成独立的子问题,并通过将子问题的解合并来得到原问题的解,时间复杂度较低;而回溯法更注重尝试和回溯的过程,在解空间中搜索符合条件的解,可能需要遍历所有的可能解,时间复杂度较高。在选择使用哪种算法思想时,需要根据具体问题的特点和要求进行选择。
机器学习实战之朴素贝叶斯 1.1、简介 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(AB)的情况下如何求得P(BA)。这里先解释什么是条件概率:P(AB)表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公式为: 贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(AB),P(BA)则很难直接得出,但我们更关心P(BA),贝叶斯定理就
最近学习到的关于求解器的新知识总结。首先求解器是用在数学规划问题中的常见工具,那么问题来了,数学中用到的工具和供应链业务有什么相关呢?我们还要继续再往前走一步,看看数学规划问题能为我们解决些什么业务问题。带着这些疑惑请耐心往下看,文章较长。
直接或间接地调用自身的算法称为递归算法。 递归是算法设计与分析中经常使用的一种技术,描写叙述简单且易于理解。
Generalized Planning for the Abstraction and Reasoning Corpus
在昨天推送了用一个例子引入贝叶斯公式的基本思想,然后用贝叶斯公式对一个很简单的问题做分类,最后引出来一个问题:后验概率 P(c | x) 的求解转化为求解 P(c)和 P(x | c),P(c) 根据大数定律容易求得,所以 P(x | c)成为了最核心也是最迫切需要求解的问题。下面,借助一个例子解释它是如何求解的,这个求解思想有一个很朴素的名字:朴素贝叶斯分类器。 1 一堆苹果 笔者比较喜欢吃苹果,所以举例子总是会想起苹果,所以去超市买水果时,苹果往往是必备的。长年累月,摸索了一套挑选苹果的方法,一般红润
目前,在计算机这个学科中有两个非常重要方向:一个是离散优化的经典算法-图算法,例如SAT求解器、整数规划求解器;另一个是近几年崛起的深度学习,它使得数据驱动的特征提取以及端到端体系结构的灵活设计成为可能。
选自TLP 机器之心编译 参与:Nurhachu Null、黄小天 本文介绍了牛顿法(Newton's Method),以及如何用它来解决 logistic 回归。logistic 回归引入了伯努利分布(Bernoulli distribution)中的对数似然概念,并涉及到了一个称作 sigmoid 函数的简单变换。本文还介绍了海森矩阵(这是一个关于二阶偏微分的方阵),并给出了如何将海森矩阵与梯度结合起来实现牛顿法。 与最初的那篇介绍线性回归和梯度的文章相似,为了理解我们的数学思想是如何转换成在二元分类问
Python作为一种编程语言,拥有简洁、高效的表达能力。与此同时,Python语言环境中还配备各种软件库,即模块。结合实际问题,选择适当的模块,便可生成简单、快速、正确的程序。
原书主要介绍了一些基础数学,例如排列组合以及递归循环等,但是本节只重点介绍计算算法的运行时间的三种方法
根据因子值分配股票权重时,可以按照是否有一个基准目标分为两大类(比如中证500指数增强策略就是以中证500指数为基准目标)。无具体对标基准的组合优化,可以有简单的经验法则,比如等权和市值加权;也可以基于MVO的框架,进行凸优化求解。有基准的组合优化,一种是基于指数被动跟踪的管理,常常使用跟踪误差最小化;而基于指数增强的主动管理策略,则大多使用基于跟踪误差的风险调整收益。
6月14日-19日,CVPR 2020在线上举行,据了解,本届大会共收到6656篇投稿,接收论文1470篇,录用率约22%,低于ICCV 2019论文录用率(25%),为十年以来最低录用率。
根据结合权威释义,先来简单回顾一下遗传算法(Genetic Algorithm,GA)的基本概念,遗传算法最早是由美国的 John holland在20世纪70年代提出的,该算法是根据大自然中生物体进化规律而设计提出的,还是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,也是一种通过模拟自然进化过程搜索最优解的方法。
机器之心原创 作者:Yanchen Wang 参与:panda 去年,Michael I. Jordan 实验室发表论文《CoCoA: A General Framework for Communication-Efficient Distributed Optimization》提出了一种用于机器学习的分布式优化的通用框架 CoCoA。机器之心技术顾问 Yanchen Wang 对该研究进行了深度解读。 引言 在做深度学习时,现代数据集的规模必需高效的设计和开发,而且理论上算法也要进行分布式优化。分布
“算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。” “在谈到算法时,我们不得不去了解一下什么是时间复杂度和空间复杂度这两个概念” 计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间,时间复杂度常用大O符号(大O符号(Big O notation)是用于描述函数渐进行为的数学符号。 空间复杂度:它是用来评估算法内存占用大小的一个式子。
Lingo是一款由LINGO公司开发的商业数学建模软件。它可以用于线性规划、整数规划、非线性规划、动态规划等多种应用领域。Lingo软件具有强大的模型建立、求解和结果分析等功能,是一款理想的数学建模和优化工具。
1.比较笨的枚举算法思想 2聪明—点的递推算法思想 3.充分利用自己的递归算法思想 4.各个击破的分治算法思想 5.贪心算法思想并不贪婪 6.试探法算法思想是—种委婉的做法 7.迭代算法 8.模拟算法思想
在软件开发领域中,人们经常会用到这一个概念——“设计模式”(design pattern),它是一种针对软件设计的共性问题而提出的解决方案。在一本圣经级的书籍《设计模式:可复用面向对象软件的基础》(1991年,Design Patterns - Elements of Reusable Object-Oriented Software)中,它提出了23种设计模式。迭代器模式就是其中的一种,在各种编程语言中都得到了广泛的应用。
给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。candidates 中的每个数字在每个组合中只能使用一次。
ode23s(stiff differential equation solver)是MATLAB中的一种求解刚性(stiff)微分方程的数值方法。刚性微分方程通常具有多个时间尺度差异较大的变量,并且其中至少有一个变量具有快速变化的特性。
作者:陈之炎 本文约2000字,建议阅读10分钟本文介绍了蒙特卡洛算法。 蒙特卡洛算法(Monte Carlo algorithm)是一种基于随机采样的计算方法,其基本思想是通过生成随机样本,利用统计学原理来估计数学问题的解。它最初是由美国洛斯阿拉莫斯国家实验室的科学家斯坦尼斯拉夫·乌拉姆(Stanislaw Ulam)和尤里·维加(Nicholas Metropolis)在20世纪40年代初开发的,用于模拟核反应堆中的中子传输问题。 蒙特卡洛算法的核心原理是利用随机数和概率统计方法来模拟问题,通过大量随机
组合优化是量化投资策略实施过程中非常重要的步骤,组合优化的过程是结合不同的投资目标及风险约束给出最优组合权重的过程。在数学上,它是一个凸优化的求解问题。业界常用的凸优化的求解工具包有CVXPY及CVXOPT。但这两款工具包并不是专门针对投资组合优化的,在求解过程中还需要将组合优化的问题转化为对应的优化问题。
领取专属 10元无门槛券
手把手带您无忧上云