基于无标签机器学习的异常检测方法主要依赖于数据的内在结构和统计特性来识别异常点。以下是一些常见的无标签机器学习方法用于异常检测:
以下是一个基于Isolation Forest的异常检测示例代码:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import random
import os
import time
import math
import iForest
# 生成随机数据
def generate_data(n, n_features, n_anomalies):
data = np.random.randn(n, n_features)
for i in range(n_anomalies):
data[i] = [random.uniform(-10, 10), random.uniform(-10, 10)]
return data
# 使用Isolation Forest进行异常检测
def detect_anomalies(data, n_estimators=100):
forest = iForest.IsolationForest(n_estimators=n_estimators, random_state=42)
forest.fit(data)
anomalies = forest.predict(data)
return anomalies
# 示例数据
data = generate_data(1000, 2, 10)
anomalies = detect_anomalies(data)
# 绘图
plt.figure(figsize=(10, 6))
sns.scatterplot(x=data[:, 0], y=data[:, 1], hue=anomalies, palette="coolwarm", legend='full')
plt.title('Anomaly Detection using Isolation Forest')
plt.show()
领取专属 10元无门槛券
手把手带您无忧上云