首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【Python】基于某些列删除数据框中的重复值

subset:用来指定特定的列,根据指定的列对数据框去重。默认值为None,即DataFrame中一行元素全部相同时才去除。...导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 name = pd.read_csv('name.csv...从结果知,参数为默认值时,是在原数据的copy上删除数据,保留重复数据第一条并返回新数据框。 感兴趣的可以打印name数据框,删重操作不影响name的值。...结果和按照某一列去重(参数为默认值)是一样的。 如果想保留原始数据框直接用默认值即可,如果想直接在原始数据框删重可设置参数inplace=True。...但是对于两列中元素顺序相反的数据框去重,drop_duplicates函数无能为力。 如需处理这种类型的数据去重问题,参见本公众号中的文章【Python】基于多列组合删除数据框中的重复值。 -end-

20.5K31

【Python】基于多列组合删除数据框中的重复值

最近公司在做关联图谱的项目,想挖掘团伙犯罪。在准备关系数据时需要根据两列组合删除数据框中的重复值,两列中元素的顺序可能是相反的。...本文介绍一句语句解决多列组合删除数据框中重复值的问题。 一、举一个小例子 在Python中有一个包含3列的数据框,希望根据列name1和name2组合(在两行中顺序不一样)消除重复项。...二、基于两列删除数据框中的重复值 1 加载数据 # coding: utf-8 import os #导入设置路径的库 import pandas as pd #导入数据处理的库...import numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 df =...从上图可以看出用set替换frozense会报不可哈希的错误。 三、把代码推广到多列 解决多列组合删除数据框中重复值的问题,只要把代码中取两列的代码变成多列即可。

14.7K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    盘点使用Pandas解决问题:对比两列数据取最大值的5个方法

    一、前言 前几天在Python星耀交流群有个叫【iLost】的粉丝问了一个关于使用pandas解决两列数据对比的问题,这里拿出来给大家分享下,一起学习。...大概意思是说在DF中有2列数据,想每行取两列数据中的最大值,形成一个新列,该怎么写?最开始【iLost】自己使用了循环的方法写出了代码,当然是可行的,但是写的就比较难受了。...二、解决过程 这里给出5个方法,感谢大佬们的解答,一起来看看吧! 方法一:【月神】解答 其实这个题目的逻辑和思路也相对简单,但是对于Pandas不熟悉的小伙伴,接受起来就有点难了。...长城】解答 这个方法也是才哥群里的一个大佬给的思路。...这篇文章基于粉丝提问,针对df中,想在每行取两列数据中的最大值,作为新的一列问题,给出了具体说明和演示,一共5个方法,顺利地帮助粉丝解决了问题,也帮助大家玩转Pandas,学习Python相关知识。

    4.3K30

    Python入门之数据处理——12种有用的Pandas技巧

    翻译:黄念 校对:王方思 小编和大伙一样正在学习Python,在实际数据操作中,列联表创建、缺失值填充、变量分箱、名义变量重新编码等技术都很实用,如果你对这些感兴趣,请看下文: ◆ ◆ ◆ 引言...◆ ◆ ◆ 我们开始吧 从导入模块和加载数据集到Python环境这一步开始: ? # 1–布尔索引 如果你想根据另一列的条件来筛选某一列的值,你会怎么做?...在利用某些函数传递一个数据帧的每一行或列之后,Apply函数返回相应的值。该函数可以是系统自带的,也可以是用户定义的。举个例子,它可以用来找到任一行或者列的缺失值。 ? ?...让我们基于其各自的众数填补出“性别”、“婚姻”和“自由职业”列的缺失值。 #首先导入函数来判断众数 ? 结果返回众数和其出现频次。请注意,众数可以是一个数组,因为高频的值可能有多个。...2. .values[0]后缀是必需的,因为默认情况下元素返回的索引与原数据框的索引不匹配。在这种情况下,直接赋值会出错。 # 6. 交叉表 此函数用于获取数据的一个初始“感觉”(视图)。

    5K50

    Pandas 学习手册中文第二版:1~5

    s中的索引匹配,然后通过对齐两个Series进行乘法。...对齐基于索引标签提供多个序列对象中相关值的自动关联。 使用标准的过程技术,可以在多个集合中节省很多容易出错的工作量匹配数据。 为了演示对齐,让我们举一个在两个Series对象中添加值的示例。...重新索引实现了以下几项功能: 重新排序现有数据来匹配一组标签 在没有标签数据的地方插入NaN标记 可以使用某种逻辑填充标签的缺失数据(默认为添加NaN值) 重新索引可以很简单,只需为Series的.index...当您要对齐两个Series以对两个Series中的值执行操作但Series对象没有由于某种原因对齐的标签时,重新索引也很有用。...结果数据帧将由两个列的并集组成,缺少的列数据填充有NaN。 以下内容通过使用与df1相同的索引创建第三个数据帧,但只有一个列的名称不在df1中来说明这一点。

    8.3K10

    短视频如何有效去重?vivo 短视频分享去重实践

    第三个部分是特征召回部分,主要是作为 Milvus 数据库的客户端代理工作,工作内容主要是负责创建集合以及索引。第四个部分则是基于 Milvus 数据库搭建的检索集群,里面分为主集群和备集群。...在进行系统的详细介绍之前,我们先来看一组压测结果。从结果中可以看到,第一列向量数量、第三列向量维度和最终的 TPS 呈负线性相关。...,迁移完成后,这个状态也就重新变成了正常的状态)。...,解决二值索引的相关问题。...在未来,我们期待 Milvus 数据库对以下方向进行优化: 匹配分级:对匹配结果进行分级,对于低于阈值之下的视频通过视频处理、采集更细致的视频特征,进行二次匹配; 索引构建效率提升:与社区合作,针对二值索引的构建性能进行优化

    96610

    Pandas系列 - 重建索引

    示例 重建索引与其他对象对齐 填充时重新加注 重建索引时的填充限制 重命名 重新索引会更改DataFrame的行标签和列标签。重新索引意味着符合数据以匹配特定轴上的一组给定的标签。...可以通过索引来实现多个操作: 重新排序现有数据以匹配一组新的标签 在没有标签数据的标签位置插入缺失值(NA)标记 示例 import pandas as pd import numpy as np N...1.543179 -0.590498 0.569140 5 -0.887682 -0.390340 0.793262 6 0.200928 0.536087 -0.884333 注意 : 在这里,df1数据帧...列名称应该匹配,否则将为整个列标签添加NAN。...填充时重新加注 reindex()采用可选参数方法,它是一个填充方法 其值如下: pad/ffill - 向前填充值 bfill/backfill - 向后填充值 nearest - 从最近的索引值填充

    98021

    Pandas 秘籍:1~5

    这些参数中的每一个都可以设置为字典,该字典将旧标签映射到它们的新值。 更多 重命名行标签和列标签有多种方法。 可以直接将索引和列属性重新分配给 Python 列表。...这种与偶数技术的联系通常不是学校正式教的。 它不会始终将数字偏向更高端。 这里有必要四舍五入,以使两个数据帧值相等。equals方法确定两个数据帧之间的所有元素和索引是否完全相同,并返回一个布尔值。...在分析期间,可能首先需要找到一个数据组,该数据组在单个列中包含最高的n值,然后从该子集中找到最低的m基于不同列的值。...步骤 5 至 7 使用基于标签的索引器.loc复制步骤 2 至 4。 标签必须与索引中的值完全匹配。...Pandas 通过数据帧的query方法具有替代的基于字符串的语法,该语法可提供更高的清晰度。 数据帧的query方法是实验性的,不具备布尔索引功能,因此不应用于生产代码。

    37.6K10

    Pandas 秘籍:6~11

    也完全可以将数据帧一起添加。 将数据帧加在一起将在计算之前对齐索引和列,并产生不匹配索引的缺失值。 首先,从 2014 年棒球数据集中选择一些列。...由于两个数据帧的索引相同,因此可以像第 7 步中那样将一个数据帧的值分配给另一列中的新列。 更多 从步骤 2 开始,完成此秘籍的另一种方法是直接从sex_age列中分配新列,而无需使用split方法。...在数据帧的当前结构中,它无法基于单个列中的值绘制不同的组。 但是,第 23 步显示了如何设置数据帧,以便 Pandas 可以直接绘制每个总统的数据,而不会像这样循环。...join: 数据帧方法 水平组合两个或多个 Pandas 对象 将调用的数据帧的列或索引与其他对象的索引(而不是列)对齐 通过执行笛卡尔积来处理连接列/索引上的重复值 默认为左连接,带有内,外和右选项...merge: 数据帧方法 准确地水平合并两个数据帧 将调用的数据帧的列/索引与其他数据帧的列/索引对齐 通过执行笛卡尔积来处理连接列/索引上的重复值 默认为内连接,带有左,外和右选项 join

    34K10

    商汤提出手机端实时单目三维重建系统,实现逼真AR效果和交互

    该位姿经过后端全局优化后进入深度估计模块,对于新增的每个关键帧,首先基于多视图半全局匹配方法计算关键帧初始深度图,然后采用置信度和深度神经网络优化深度图噪声,优化后的深度图输入增量式网格生成模块后实时构建场景表面稠密网格...图 5 所示为带有一定位姿偏差的图像,第二列为置信度剔除噪声后的深度图,最后一列为经过深度优化网络后的深度图结果,可以看出深度图仅存在少量的空间噪声。 ? 图5 基于深度神经网络的深度图优化 2....,从而重建场景三维信息 具体方式如下: ① 可扩展的哈希函数 本文使用一个三维的 voxel hash 空间索引存储深度的 TSDF 值,索引过程如图 6 所示,为了避免哈希索引的冲突,对于 volume...图6 可扩展哈希索引示意图 ② 体素的融合与动态物体移除 对于输入的每个关键帧深度图,通过将深度值投影到三维的体素块中,从而判断是否需要分配新的体素块,如果需要则将体素块的 TSDF 和权值信息插入到索引表中...图8 三个关键帧的增量式网格更新示意图 Part 3 实验结果 本文使用 OPPO R17 Pro 手机采集带有真实场景深度的5组数据,用于从定性和定量两个方面对比 Mobile3DRecon 与一些

    2.4K30

    NumPy 和 Pandas 数据分析实用指南:1~6 全

    ,例如基于布尔值的索引,并将值分配为零。...这意味着我们应该将第一个参数作为冒号,以便在我们选择的列中更加挑剔。 loc和iloc将在它们的两个参数上加上基于索引的索引或基于整数位置的索引,而ix可能允许混合使用此行为。 我不建议这样做。...必须牢记的是,涉及数据帧的算法首先应用于数据帧的列,然后再应用于数据帧的行。 因此,数据帧中的列将与单个标量,具有与该列同名的索引的序列元素或其他涉及的数据帧中的列匹配。...如果有序列或数据帧的元素找不到匹配项,则会生成新列,对应于不匹配的元素或列,并填充 Nan。 数据帧和向量化 向量化可以应用于数据帧。...如果使用序列来填充数据帧中的缺失信息,则序列索引应对应于数据帧的列,并且它提供用于填充该数据帧中特定列的值。 让我们看一些填补缺失信息的方法。

    5.4K30

    哦耶!美团二面过了!

    每一层父节点的索引值都会出现在下层子节点的索引值中,因此在叶子节点中,包括了所有的索引值信息,并且每一个叶子节点都有两个指针,分别指向下一个叶子节点和上一个叶子节点,形成一个双向链表。...联合索引 可以看到,联合索引的非叶子节点用两个字段的值作为 B+Tree 的 key 值。...MVCC的隔离机制介绍一下? 我们需要了解两个知识: Read View 中四个字段作用; 聚簇索引记录中两个跟事务有关的隐藏列; 那 Read View 到底是个什么东西?...知道了 Read View 的字段,我们还需要了解聚簇索引记录中的两个隐藏列。...假设在账户余额表插入一条小林余额为 100 万的记录,然后我把这两个隐藏列也画出来,该记录的整个示意图如下: 图片 对于使用 InnoDB 存储引擎的数据库表,它的聚簇索引记录中都包含下面两个隐藏列:

    21030

    POLARDB IMCI 白皮书 云原生HTAP 数据库系统 一 列式数据是如何存储与处理的

    第四部分将深入介绍列索引存储,这是PolarDB-IMCI处理分析查询的关键部分。PolarDB-IMCI支持高度调优的面向事务处理的云存储的基于行的存储引擎[14, 28]。...为此,PolarDB-IMCI实现了一个行ID定位器(即两层LSM树)来将主键映射到列索引中行的物理位置。 数据包布局。...对于各种数据类型,列索引采用不同的压缩算法。数字列采用参考帧、增量编码和位压缩压缩的组合,而字符串列使用字典压缩。...对于各种数据类型,列索引采用不同的压缩算法。数字列采用参考帧、增量编码和位压缩压缩的组合,而字符串列使用字典压缩。...PolarDB-IMCI定期检测和重新排列底部的数据包,以保持列索引的无效行的低水位。例如,稀疏数据包,有效行少于一半,被选为下溢。

    22150

    加速数据分析,这12种高效Numpy和Pandas函数为你保驾护

    array([1, 8, 2, 0], dtype=int64)np.sort(x[index_val]) array([10, 12, 12, 16]) allclose() allclose() 用于匹配两个数组...简化将数据转换为 DataFrame 对象的过程,而这些数据基本是 Python 和 NumPy 数据结构中不规则、不同索引的数据; 基于标签的智能切片、索引以及面向大型数据集的子设定; 更加直观地合并以及连接数据集...Isin () 有助于选择特定列中具有特定(或多个)值的行。...当一个数据帧分配给另一个数据帧时,如果对其中一个数据帧进行更改,另一个数据帧的值也将发生更改。为了防止这类问题,可以使用 copy () 函数。...,基于 dtypes 的列返回数据帧列的一个子集。

    6.7K20

    加速数据分析,这12种高效Numpy和Pandas函数为你保驾护航

    array([1, 8, 2, 0], dtype=int64)np.sort(x[index_val]) array([10, 12, 12, 16]) allclose() allclose() 用于匹配两个数组...简化将数据转换为 DataFrame 对象的过程,而这些数据基本是 Python 和 NumPy 数据结构中不规则、不同索引的数据; 基于标签的智能切片、索引以及面向大型数据集的子设定; 更加直观地合并以及连接数据集...Isin () 有助于选择特定列中具有特定(或多个)值的行。...当一个数据帧分配给另一个数据帧时,如果对其中一个数据帧进行更改,另一个数据帧的值也将发生更改。为了防止这类问题,可以使用 copy () 函数。...,基于 dtypes 的列返回数据帧列的一个子集。

    7.5K30
    领券