文章目录 1. tf.saved_model.save 2. Keras API 模型导出 学习于:简单粗暴 TensorFlow 2 1. tf.saved_model.save tf.train.Checkpoint 可以保存和恢复模型中参数的权值 导出模型:包含参数的权值,计算图 无须源码即可再次运行模型,适用于模型的分享、部署 注意: 继承 tf.keras.Model 的模型,一些方法需要是计算图模式,比如 call() 方法必须用 @tf.function 修饰 class MLPmodel
去年 10 月,谷歌才发布了 TensorFlow 2.0 正式版。时隔三个月后,昨日官方发布了 TensorFlow 2.1,本次版本更新带了了多项新特性、功能改进和 bug 修复。
而Autograph机制可以将动态图转换成静态计算图,兼收执行效率和编码效率之利。
特邀博文 / 软件工程师 Pierric Cistac;研究员 Victor Sanh;技术主管 Anthony Moi,来自 Hugging Face
如果您使用过 TensorFlow 1.x,则本部分将重点介绍迁移到 TensorFlow 2.0 所需的总体概念更改。 它还将教您使用 TensorFlow 可以进行的各种 AIY 项目。 最后,本节向您展示如何将 TensorFlow Lite 与跨多个平台的低功耗设备一起使用。
为提高 TensorFlow 的工作效率,TensorFlow 2.0 进行了多项更改,包括删除了多余的 API,使API 更加一致统一,例如统一的 RNNs (循环神经网络),统一的优化器,并且Python 运行时更好地集成了 Eager execution 。
【导读】TensorFlow 1.0并不友好的静态图开发体验使得众多开发者望而却步,而TensorFlow 2.0解决了这个问题。不仅仅是默认开启动态图模式,还引入了大量提升编程体验的新特性。本文通过官方2.0的风格指南来介绍新版本的开发体验。
在最近的一篇文章中,我们提到,TensorFlow 2.0经过重新设计,重点关注开发人员的工作效率、简单性和易用性。
Python深度学习-深入理解Keras:Keras标准工作流程、回调函数使用、自定义训练循环和评估循环。
TensorFlow有5个不同的层次结构:即硬件层,内核层,低阶API,中阶API,高阶API。本章我们将以线性回归为例,直观对比展示在低阶API,中阶API,高阶API这三个层级实现模型的特点。
强烈安利 Google的Colab,即使你没有一台很好的电脑,也能在这个平台上学习TensorFlow
【AI科技大本营导语】在今天举行的 2019 年 TensorFlow 开发者峰会上,谷歌宣布了其针对研究和生产的开源机器学习库的一些更新。TensorFlow 2.0 alpha 提供即将发生的变化的预览,旨在让初学者更容易使用 ML。
TensorFlow的层次结构 TensorFlow中5个不同的层次结构: 硬件层,内核层,低阶API,中阶API,高阶API 最底层为硬件层,TensorFlow支持CPU、GPU或TPU加入计算资
TensorFlow的高阶API主要为tf.keras.models提供的模型的类接口。
tensorflow2.0改进之后已经非常像numpy形式了,不用像之前的session那样操作,一些基本的操作如下。需要注意的店以及部分数据均写在代码注释中。
训练集有20000条电影评论文本,测试集有5000条电影评论文本,其中正面评论和负面评论都各占一半。
Use tf.data to batch and shuffle the dataset:
拿来药材(数据),架起八卦炉(模型),点着六味真火(优化算法),就摇着蒲扇等着丹药出炉了。
今天Tony老师给大家带来的案例是Kaggle上的Twitter的情感分析竞赛。在这个案例中,将使用预训练的模型BERT来完成对整个竞赛的数据分析。
参考: https://tf.wiki/zh_hans/deployment/serving.html# https://tensorflow.google.cn/tfx/serving/docker
这是一本简明的 TensorFlow 2.0 入门指导手册,基于 Keras 和 Eager Execution(即时运行)模式,力图让具备一定机器学习及 Python 基础的开发者们快速上手 TensorFlow 2.0。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
对于 ParameterServerStrategy V2,我们将从几个方面来研究:如何与集群建立连接,如何生成变量,如何获取数据,如何运行。其中,变量和作用域我们在前文已经研究过,运行在 MirroredStrategy 里面也介绍,所以本文主要看看如何使用,如何初始化。在下一篇之中会重点看看如何分发计算。
谷歌深度学习研究员、“Keras之父”François Chollet发表推特,总结了一份TensorFlow 2.0 + Keras做深度学习研究的速成指南。
TensorFlow的中阶API主要包括各种模型层,损失函数,优化器,数据管道,特征列等等。
点击上方↑↑↑“OpenCV学堂”关注我来源:公众号 机器之心 授权 TensorFlow 2.9 已发布,还没有更新的小伙伴现在可以更新了。 昨日,TensorFlow 官方宣布:TensorFlow 2.9 来了!距离上次 2.8 版本的更新仅仅过去三个月。 新版本亮点包括如下: oneDNN 的性能改进; DTensor 的发布,这是一种新 API,可用于从数据并行无缝迁移到模型并行; 对核心库进行了改进,包括 Eigen、tf.function 统一以及对 Windows 的 WSL2 的新支持
机器之心报道 编辑:陈萍、杜伟 TensorFlow 2.9 已发布,还没有更新的小伙伴现在可以更新了。 昨日,TensorFlow 官方宣布:TensorFlow 2.9 来了!距离上次 2.8 版本的更新仅仅过去三个月。 新版本亮点包括如下: oneDNN 的性能改进; DTensor 的发布,这是一种新 API,可用于从数据并行无缝迁移到模型并行; 对核心库进行了改进,包括 Eigen、tf.function 统一以及对 Windows 的 WSL2 的新支持; 还为 tf.function ret
本文介绍基于Python的tensorflow库,将tensorflow与keras训练好的SavedModel格式神经网络模型转换为frozen graph格式,从而可以用OpenCV库在C++等其他语言中将其打开的方法。
神经网络通常依赖反向传播求梯度来更新网络参数,求梯度过程通常是一件非常复杂而容易出错的事情。
深度学习的训练过程常常非常耗时,一个模型训练几个小时是家常便饭,训练几天也是常有的事情,有时候甚至要训练几十天。
机器之心原创 机器之心编辑部 现在都 2021 年了,机器学习好填的坑都已经填了,大家都在想怎么将模型用到各种实际任务上。我们再去讨论深度学习框架,吐槽它们的体验,会不会有点过时?并不会,新模型与新算法,总是框架的第一生产力。 从 Theano 一代元老,到 TensorFlow 与 PyTorch 的两元世界,到现在各个国产框架与工具组件的兴起。深度学习框架,总是跟随前沿 DL 技术的进步而改变。 不过今天并不是讨论深度学习框架的演变,而只是单纯分享一下在算法工程中,使用 TensorFlow 遇到的各种
本书的这一部分将为您简要概述 TensorFlow 2.0 中的新增功能,与 TensorFlow 1.x 的比较,惰性求值和急切执行之间的差异,架构级别的更改以及关于tf.keras和Estimator的 API 使用情况。
TensorFlow 2.0 安装指南:https://www.tensorflow.org/install
参考 Tensorflow学习——Eager Execution - 云+社区 - 腾讯云
TensorFlow™ 是一个采用 数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等。TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机器学习和深度神经网络方面的研究,但这个系统的通用性使其也可广泛用于其他计算领域。
GAN的基本原理其实非常简单,它包含两个网络,G网络(Generator)和D网络(Discriminator)。G网络的目标是尽量生成真实的图片去欺骗判别网络D,D网络的目标是尽量把G网络生成的图片和真实的图片分别开来。
动态计算图易于调试,编码效率较高,但执行效率偏低。 静态计算图执行效率很高,但较难调试。
目前为止,我们只是使用了TensorFlow的高级API —— tf.keras,它的功能很强大:搭建了各种神经网络架构,包括回归、分类网络、Wide & Deep 网络、自归一化网络,使用了各种方法,包括批归一化、dropout和学习率调度。事实上,你在实际案例中95%碰到的情况只需要tf.keras就足够了(和tf.data,见第13章)。现在来深入学习TensorFlow的低级Python API。当你需要实现自定义损失函数、自定义标准、层、模型、初始化器、正则器、权重约束时,就需要低级API了。甚至有时需要全面控制训练过程,例如使用特殊变换或对约束梯度时。这一章就会讨论这些问题,还会学习如何使用TensorFlow的自动图生成特征提升自定义模型和训练算法。首先,先来快速学习下TensorFlow。
Google Colab免费为TPUs提供实验支持!在本文中,我们将讨论如何在Colab上使用TPU训练模型。具体来说,我们将通过在TPU上训练huggingface transformers库里的BERT来进行文本分类。
网络层与算子融合是非常有效的方法,本文将配合TensorRT与tflite推理框架介绍下网络层与算子融合的原理与应用。
去年8月13日,谷歌宣布 “TensorFlow 2.0 is coming”, 最近几天,谷歌 TensorFlow 团队刚刚发布了 TensorFlow 2.0 Preview 版, 可以来这里查看:
您现在对 Keras 有了一些经验——您熟悉 Sequential 模型、Dense 层以及用于训练、评估和推断的内置 API——compile()、fit()、evaluate() 和 predict()。您甚至在第三章中学习了如何从 Layer 类继承以创建自定义层,以及如何使用 TensorFlow 的 GradientTape 实现逐步训练循环。
tf.test.is_gpu_available() # 判断gpu可用与否 ``` 2. 从镜像配置 ```shell # 云端的系统镜像直接有开发环境 # 升级tensorflow 版本 pip install --upgrade tensorflow-gpu==2.0.0 pip3 install --upgrade tensorflow-gpu==2.0.0 ```
https://tensorflow.google.cn/guide/distributed_training(此文的信息是2.3版本之前)。
本文介绍一些在训练多标签图像分类器时可能会感兴趣的概念和工具。完整的代码可以在GitHub上找到。
领取专属 10元无门槛券
手把手带您无忧上云