首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Google AI与Deepmind强强联合,推出新工具加速神经网络稀疏化进程

    为了解决这一问题,近日,Google联合Deepmind开发出了在TensorFlow Lite和XNNPACK ML中的新特性和工具库。...图:现代移动架构中1x1卷积的推断时间对比 在现代的推理设备中(如XNNPACK),深度学习模型中1x1卷积的实现以及其他操作都依赖于HWC张量布局,其中张量的维数对应于输入图像的高度、宽度和通道(如红色...张量的这种重新排序,可以允许加速实现稀疏的1x1卷积核,原因有两个: 1)在单个条件检查之后,当对应的通道权值为零时,可以跳过张量的整个空间切片,而不是逐像素测试; 2)当信道权值为非零时,可以通过将相邻的像素加载到同一存储单元来提高计算效率...为了避免每次操作后在稀疏推理最优的CHW张量布局和标准的HWC张量布局之间来回转换,XNNPACK提供了几种在CHW布局中CNN算子的高效实现。...训练稀疏神经网络指南 为了创建稀疏神经网络,这个版本包含的指南建议从稠密版本开始,然后在训练过程中逐渐将其权重的一部分设置为零——这个过程叫做剪枝。

    98630

    tf.compat

    .): 返回张量的对角线部分。digamma(...): 计算,的导数(的绝对值的对数)dimension_at_index(...): 兼容性实用程序需要允许在TF中同时存在V1和V2行为。....): 兼容性实用程序需要允许在TF中同时存在V1和V2行为。disable_eager_execution(...): 禁用急切的执行。....): 在TensorFlow 2.0中,遍历TensorShape实例将返回值。encode_base64(...): 将字符串编码为web安全的base64格式。....): 将任何类似字符串的python输入类型转换为unicode。dimension_at_index(...): 兼容性实用程序需要允许在TF中同时存在V1和V2行为。....): 兼容性实用程序需要允许在TF中同时存在V1和V2行为。forward_compatibility_horizon(...): 上下文管理器,用于测试生成的图的正向兼容性。

    5.3K30

    手把手教你为iOS系统开发TensorFlow应用(附开源代码)

    在这篇博文中,我将解释 TensorFlow 背后的思想,如何使用它来训练一个简单的分类器,以及如何将这个分类器放在你的 iOS 应用程序中。...标量数是零阶张量 向量是一阶张量 矩阵是二阶张量 三维数组是一个三阶张量 等…… 这就是需要说明的一切。...在数学中,矩阵通常被写成大写字母而向量为小写。在我们的脚本中,X 是矩阵,y 是向量。这样的惯例在大量机器学习代码中很常见。...调用 sess.run(init) 将 W 和 b 重置为 0。 我们也将此计算图写入到了一个文件。...本文除了讲述如何训练模型外,还展示了如何将 TensorFlow 添加到你的 iOS 应用程序中。在本节中,我想总结一下这样做的优点与缺点。

    1.2K90

    多维张量的几何理解

    三维方向定义,适用于2维和3维0、零维张量import tensorflow as tf#零维张量const0 = tf.constant(1, tf.float16)print(const0)运行结果...一维张量没有行和列的概念,只有长度的概念。上述的const1就是长度为4的一维张量,或者称为向量。 上面的图仅为示意,代表一维张量只有axis=0这个方向,并不是指这是一个4行的向量。...事实上,tensorflow在做一些运算时,反而经常把1行N列的二维张量简化成一个长度为N的一维向量。...shape=(3, 4, 2)时,表示3行4列深度为2的张量 shape=(2, 3, 4, 2)时,表示有2个 3行4列深度为2的张量 shape=(6, 2, 3, 4, 2)时,表示有6个四维张量...,这个四维张量又可以表示为2个 3行4列深度为2的张量。

    2K30

    解决AttributeError: module tensorflow has no attribute reset_default_graph

    在旧版本的TensorFlow中,可以使用以下代码将默认图重置为初始状态:pythonCopy codeimport tensorflow as tftf.reset_default_graph()但是请注意...在较新版本的TensorFlow中,默认图的重置已经不再是必要的,所以我们可以直接删除这部分代码。...tf.reset_default_graph()​​是TensorFlow中的一个方法,用于重置默认计算图。默认计算图在TensorFlow中是一个全局唯一的计算图,它会存储我们定义的所有操作和张量。...重复调用模型时,如果不重置默认计算图,之前定义的操作和张量会继续存在于默认计算图中,导致命名冲突或混乱的结果。...然而,在较新的TensorFlow版本(TensorFlow 2.x)中,默认计算图的重置已经不再是必要的。

    77810

    tf.where

    如果x和y都为空,那么这个操作返回条件的真元素的坐标。坐标在二维张量中返回,其中第一个维度(行)表示真实元素的数量,第二个维度(列)表示真实元素的坐标。...记住,输出张量的形状可以根据输入中有多少个真值而变化。索引按行主顺序输出。如果两者都是非零,则x和y必须具有相同的形状。如果x和y是标量,条件张量必须是标量。...条件张量充当一个掩码,它根据每个元素的值选择输出中对应的元素/行是来自x(如果为真)还是来自y(如果为假)。...如果条件为秩1,x的秩可能更高,但是它的第一个维度必须与条件的大小匹配y: 与x形状和类型相同的张量name: 操作的名称(可选)返回值:一个与x, y相同类型和形状的张量,如果它们是非零的话。...异常:ValueError: When exactly one of x or y is non-None.原链接: https://tensorflow.google.cn/versions/r1.9

    2.3K30

    01 TensorFlow入门(2)

    激活功能的目标是调整重量和偏差。 在TensorFlow中,激活函数是作用于张量的非线性运算。 它们是以与之前的数学运算相似的方式操作的功能。...除了使用内置的激活功能,我们还可以使用TensorFlow操作来设计自己的功能。 我们可以导入预定义的激活函数(导入tensorflow.nn为nn),或者在我们的函数调用中显式输入.nn。...TensorFlow的实现被称为ReLU6功能。 这被定义为min(max(0,x),6)。 这是一个hard-Sigmoid函数的版本,计算速度更快,并且不会消失(在零点附近)或爆炸值。...如果我们的张量被缩放为零,我们将需要使用一个激活函数,保留尽可能多的变化在零附近。 这意味着我们想要选择激活函数,如双曲正切(tanh)或softsign。...除了ReLU6,其最大值为6:这些函数在零的左边,并且线性增加到零的右边。 在图4中,我们有激活函数sigmoid,双曲正切(tanh)和softsign。

    97060

    tf.Session

    一个运行TensorFlow操作的类。会话对象封装了执行操作对象和计算张量对象的环境。...如果在同一过程中使用多个图(使用tf.Graph()创建),则必须为每个图使用不同的会话,但是每个图可以在多个会话中使用。在这种情况下,将要显式启动的图形传递给会话构造函数通常更清楚。...error happens.reset@staticmethodreset( target, containers=None, config=None)在目标上重置资源容器,并关闭所有连接的会话...资源容器分布在与目标相同的集群中的所有worker上。当重置目标上的资源容器时,将清除与该容器关联的资源。特别是,容器中的所有变量都将成为未定义的:它们将丢失它们的值和形状。...该方法运行TensorFlow计算的一个“步骤”,通过运行必要的图片段来执行每一个操作,并在fetches中计算每个张量,用feed_dict中的值替换相应的输入值。

    2.7K20

    PyTorch 特辑!网红 5 分钟带你入门 PyTorch

    PyTorch的第一个关键特性是命令式编程 命令式编程就是输入什么便执行什么。大部分Python代码都是命令式的。以这个NumPy为例: ? 我们写了4行代码来计算d的值。...但是在Tensorflow中我们只定义一次计算图,然后我们可以多次执行该计算图。这样做最大的好处在于我们可以在最开始时就优化好计算图。...然后定义批量大小 输入单元数量 隐藏单元数量和输出单元数量,然后使用这些值来辅助定义张量 用于保持输入和输出,将它们装饰在变量中,将require_grad设置为false,因为在反向传播过程中我们不需要计算这些变量的梯度...下一组变量将定义我们的权重,将它们初始化为变量 存储着随机的浮点型张量,因为我们想要计算这些变量的梯度,就将标志设置为true。定义一个学习率后我们就可以开始我们的训练循环,迭代次数为500。...现在,Tensorflow在网上提供了关于机器学习库的优秀文档,所以它仍然是初学者入门的最佳选择,因为它是以分布式计算为核心构建的,在生产实践中变现优良。

    1.1K101

    tensorflowjs

    了解开始的更多方式,请参阅下面的部分。 在不直接处理张量的情况下编写 ML 程序 想要开始机器学习,同时不用担心任何类似张量或优化器的低级细节吗?...ml5.js 库构建在 TensorFlow.js 之上,通过简洁的、可利用的 API,可以在浏览器中访问机器学习算法和模型。...TensorFlow.js 为 JavaScript 中神经网络编程提供了灵活的构建块。 请参阅如何在浏览器或 Node.js 中启动和运行 TensorFlow.js 代码。...Get Setup 将预训练模型转换到 TensorFlow.js 学习如何将预训练模型从 python 转换为 TensorFlow.js Keras Model GraphDef Model...See it on GitHub 可视化您的 TensorFlow.js 模型的状态 tfjs-vis 是一个用于在浏览器内实现可视化的小型库,用于TensorFlow.js。

    8710

    TensorFlow官方教程翻译:TensorFlow调试器

    TensorFlow调试器是TensorFlow专门的调试器。它提供运行的TensorFlow的图其内部的结构和状态的可见性。从这种可见性中获得的洞察力有利于调试各种模型在训练和推断中出现的错误。...01 用tfdbg包装TensorFlow会话 为了在我们的样例中添加tfdbg的支持,我们只需要添加下列三行代码,这三行代码会在提供了—debug标识的时候,用一个调试器包装器来包装会话对象。...运行下列指令来更进一步的查看输入张量: tfdbg>pt softmax/Softmax:0 检查输入张量的值,并搜索检查其是否有零: tfdbg>/0\.000 确实有零的存在。...从追溯中可以看到,操作是在代码debug_mnist.py:105-106行创建的: diff=y_*tf.log(y) *tfdbg的功能使得追溯张亮和操作到Python源文件中每行变得容易。...它允许你在不同的Session.run()调用中,配置查看的张量,作为对于run()调用和其他状态的获取以及feed_dict的函数。

    1.5K60

    你真的会正确地调试TensorFlow代码吗?

    第二种方法更明确,但是也更难实现(我一直都在研究模型架构,但我从没成功地用这种方法执行图),这种方法的主要思路是在 .npy 或 .npz 文件中明确地存储图的边(张量),之后再将它们加载回图中(同时根据它们的创建范围给它们分配恰当的名称...也许这一点只是对我而言很重要,但这是 TensorFlow 的特点,而且是我很不喜欢的一点。 在写单元测试还有一些其他问题时要手动重置图形。由于一些原因,很难测试用 TensorFlow 写的代码。...举个例子,由于在运行时访问的所有模块的所有张量只有一个默认的 tensorflow 图,因此无法在不重置图的情况下用不同的参数测试相同的功能。...就我个人而言,我只是简单地测试了张量的名称、形状和维度,但我确信,在一些没有执行图的情况中,只检查这部分功能并不合理。 令人困惑的张量名称。...许多人可能认为这样评价 TensorFlow 的性能不太好,但有时没人说得出来在执行某些操作后得到的张量名称是什么。

    99630

    Tensorflow 笔记:搭建神经网络

    2:TensorFlow的张量: 张量就是多维数组(列表),用“阶”表示张量的维度。...0 阶张量称作标量,表示一个单独的数; 举例 S=123 1 阶张量称作向量,表示一个一维数组; 举例 V=[1,2,3] 2 阶张量称作矩阵,表示一个二维数组,它可以有 i 行 j 列个元素,每个元素可以用行号和列号共同索引到...举例: 在之前我们曾提到过,神经网络的基本模型是神经元,神经元的基本模型其 实就是数学中的乘、加运算。我们搭建如下的计算图: ?...举例 假如生产一批零件,体积为 x1,重量为 x2,体积和重量就是我们选择的特征, 把它们喂入神经网络,当体积和重量这组数据走过神经网络后会得到一个输出。...这样在 feed_dict 中可以喂入若干组体积重量了。 前向传播过程的 tensorflow 描述: 举例 : 这是一个实现神经网络前向传播过程,网络可以自动推理出输出 y 的值。

    78830

    tf.SparseTensor

    tf.SparseTensor 函数SparseTensor 类定义在:tensorflow/python/framework/sparse_tensor.py.参见指南:稀疏张量>稀疏张量表示代表稀疏张量....TensorFlow表示一个稀疏张量,作为三个独立的稠密张量:indices,values和dense_shape.在Python中,三个张量被集合到一个SparseTensor类中,以方便使用。...:density_shape[N, ndims]的2-D int64张量,指定稀疏张量中包含非零值(元素为零索引)的元素的索引。...相应的稠密张量满足:dense.shape = dense_shapedense[tuple(indices[i])] = values[i]按照惯例,indices应该按行优先顺序排列(或者在元组上等效地按字典排序...返回: 带有dense_shape[N, ndims]的类型为int64的二维张量,其中N是张量中的非零值的数量,并且ndims是秩.op 产生values作为输出的Operation.values 表示稠密张量中的非零值

    2.1K20

    Tensorflow 笔记:搭建神经网络

    2:TensorFlow的张量: 张量就是多维数组(列表),用“阶”表示张量的维度。...0 阶张量称作标量,表示一个单独的数; 举例 S=123 1 阶张量称作向量,表示一个一维数组; 举例 V=[1,2,3] 2 阶张量称作矩阵,表示一个二维数组,它可以有 i 行 j 列个元素,每个元素可以用行号和列号共同索引到...举例: 在之前我们曾提到过,神经网络的基本模型是神经元,神经元的基本模型其 实就是数学中的乘、加运算。...举例 假如生产一批零件,体积为 x1,重量为 x2,体积和重量就是我们选择的特征, 把它们喂入神经网络,当体积和重量这组数据走过神经网络后会得到一个输出。...这样在 feed_dict 中可以喂入若干组体积重量了。 前向传播过程的 tensorflow 描述: 举例 : 这是一个实现神经网络前向传播过程,网络可以自动推理出输出 y 的值。

    1.5K50

    MIT Taco 项目:自动生成张量计算的优化代码,深度学习加速效果提高 100 倍

    在计算机科学上,类似亚马逊的表格这样的数据结构被称为 “矩阵”,张量只是一个矩阵的更高维的模拟。...好的深度学习框架中会定义成百上千个 Operator,这些 Operator 定义了张量的加、减、乘、除和矩阵乘法等等,因此,在深度学习训练中,这些节点在 GPU 上的执行会转变成数千次 GPU 上的内核执行...通过手工优化代码可以识别稀疏张量中的零条目,在运算中做到只对非零条目进行计算或者省略对零条目的计算,可以简化其操作从而加速张量的计算,但这需要程序员做更多的编程工作。...举例来说,有两个矩阵(即只有两个维度的张量)需要进行相乘,如果矩阵所有位置都是有效信息,那么对应的代码只有 12 行,但如果矩阵是稀疏的(包含大量 0),相同的操作相同的操作可能需要 100 行甚至更多的代码来跟踪遗漏和错误...对于两个张量上的任何给定操作,Taco 会首先建立一个分层映射,指出来自两个张量的哪些配对条目是非零的,然后将每个张量的条目与零配对,并在这过程中丢弃所有的零对。

    1.1K110
    领券