节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。...它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等。...二 张量数据结构 TensorFlow的数据结构是张量Tensor。Tensor即多维数组。Tensor和numpy中的ndarray很类似。...为什么TensorFlow要采用计算图来表达算法呢? 主要原因是计算图的编程模型能够让TensorFlow实现分布式并行计算。...在纯Python语言的实现中我们只能由一个机器同时完成上述计算。计算顺序可能是这样的。
128维特征向量,从而通过计算特征向量之间的欧氏距离来得到人脸相似程度。...人脸之间距离 如上图所示,直接得出不同人脸图片之间的距离,通过距离就可以判断是否是同一个人,阈值大概在1.1左右。...而现在我要做的,就是用训练好的模型文件,实现任意两张人脸图片,计算其FaceNet距离。然后就可以将这个距离用来做其他的事情了。...环境 macOS 10.12.6 Python 3.6.3 TensorFlow 1.3.0 实现 模型文件 首先我们需要训练好的模型文件,这个可以在FaceNet官方的github中获取: github...代码 这里我们需要FaceNet官方的github中获取到的facenet.py文件以供调用,需要注意的是其github中的文件一直在更新,我参考的很多代码中用到的facenet.py文件里方法居然有的存在有的不存在
语句结构:tf.zeros(shape,dtype=tf.float32,name=None)举例:tf.zeros([3, 4], tf.int32)最主要的是,shape可以接收1D张量。
其中,前向过程由用户指定,包括模型定义,目标函数、损失函数、激活函数的选取等;后向的计算过程,包括计算梯度,更新梯度等,在优化器中已经由TensorFlow实现,用户不必关心。...3 计算图的运行 TensorFlow中可以定义多个计算图,不同计算图上的张量和运算相互独立,因此每一个计算图都是一个独立的计算逻辑。...一个Session可以运行多个计算图,一个计算图也可以在多个Session中运行。...对于步骤(3)来说,可执行队列中的节点在资源允许的情况下,是可以并行执行。TensorFlow有灵活的硬件调度机制,来高效利用资源。...3.3 硬件调度 在实现上,TensorFlow 将图形定义转换成分布式执行的操作,以充分利用可用的计算资源(如CPU或GPU)。
设平面上两个点为(x1,y1)(x2,y2) 一、欧式距离 欧氏距离是一个通常采用的距离定义,指两个点之间的真实距离 二、曼哈顿距离 我们可以定义曼哈顿距离的正式意义为L1-距离或城市区块距离,也就是在欧几里德空间的固定直角坐标系上两点所形成的线段对轴产生的投影的距离总和...例如在平面上,坐标(x1,y1)的i点与坐标(x2,y2)的j点的曼哈顿距离为: d(i,j)=|X1-X2|+|Y1-Y2|....cos= 四、切比雪夫距离 切比雪夫距离是向量空间中的一种度量,二个点之间的距离定义是其各坐标数值差绝对值的最大值。...max{|x1-x2|,|y1-y2|} 国际象棋棋盘上二个位置间的切比雪夫距离是指王要从一个位子移至另一个位子需要走的步数。由于王可以往斜前或斜后方向移动一格,因此可以较有效率的到达目的的格子。...下图是棋盘上所有位置距f6位置的切比雪夫距离。
你还在为小程序中计算两个经纬度之间的距离发愁吗? 你还在为小程序中地址逆向解析发愁吗? 你还在为小程序中路线规划,地点搜索发愁吗? 好消息!好消息!...API 实现自己的服务接口,如图2 腾讯地图webservice API 计算两个经纬度的距离。...如图2 腾讯地图webservice API 计算两个经纬度的距离 2 有了官方支持时的调用 最近需要做小程序的地址解析和计算距离,查看 腾讯地图开放平台时,发现平台已经支持小程序中的使用了,如图3。...图 3 腾讯位置服务支持在小程序中使用 而且调用非常简单:只需要引入他的一个JS 文件,就可以使用了,如图4腾讯位置在小程序中的应用。 ?...图4 腾讯位置服务在小程序中的应用 具体调用实例如下: var QQMapWX = require('../..
在信息技术飞速发展的时代,迄今为止UE已被广泛应用于影视动画、游戏开发、数字孪生、虚拟仿真等等多个传统行业和新兴数字领域,并通过逼真的模型或应用程序给人们带来了交互式的体验。...在以上几种因素的影响下,传统的像素流满足不了一些使用者的需求,通常会采用新型的像素流送方式---点量像素流送。在上述几个影响的因素方面,点量像素流送是如何解决的?以下可供参考:1....兼容性,点量像素流送像常规的主流浏览器都支持,包括谷歌、360、微信或iOS,都能轻松打开进行操作。2. 访问方面,点量像素流送在弱网环境下会自动匹配相适应的码率,达到稳定流畅的运行操作。3....在支持的程序类型上,不仅可以支持UE\U3D的内容,基本Windows下的大部分应用产品均可流化,像AutoCAD、Revit等应用程序和内容。4....在交互方面,网页和客户端模式均可支持,像Windows和Android客户端,基于私有协议,延迟更低,功能更完善,容器化技术支持应用躲开,支持大并发使用,在使用终端上不仅支持常见的电脑、手机等设备,还支持平板
在model_servers的main方法中,我们看到tensorflow_model_server的完整配置项及说明如下: tensorflow_serving/model_servers/main.cc...其实TensorFlow Serving的编译安装,在github setup文档中已经写的比较清楚了,在这里我只想强调一点,而且是非常重要的一点,就是文档中提到的: Optimized build...TensorFlow Serving on Kubernetes 将TensorFlow Serving以Deployment方式部署到Kubernetes中,下面是对应的Deployment yaml...把它部署在Kubernetes中是那么容易,更是让人欢喜。...目前我们已经在TaaS平台中提供TensorFlow Serving服务的自助申请,用户可以很方便的创建一个配置自定义的TensorFlow Serving实例供client调用了,后续将完善TensorFlow
在Python中,张量通常存储在Nunpy数组,Numpy是在大部分的AI框架中,一个使用频率非常高的用于科学计算的数据包。...存储在张量数据中的公式 这里有一些存储在各种类型张量的公用数据集类型: 3维=时间序列 4维=图像 5维=视频 几乎所有的这些张量的共同之处是样本量。...这是一张我美丽无边的猫咪(Dove)的照片,750 x750像素,这意味着我们能用一个3D张量来表示它: (750,750,3) My beautiful cat Dove (750 x 750 pixels...x 1080像素),每秒15帧(总共4500帧),颜色深度为3的视频,我们可以用4D张量来存储它: (4500,1920,1080,3) 当我们有多段视频的时候,张量中的第五个维度将被使用。...我们姑且考虑下这个例子以便说明一个问题:在现实世界中,我们有时需要尽可能的缩小样本数据以方便的进行处理计算,除非你有无尽的时间。
在Python中,张量通常存储在Nunpy数组,Numpy是在大部分的AI框架中,一个使用频率非常高的用于科学计算的数据包。...实际上,3维张量最好视为一层网格,看起来有点像下图: 存储在张量数据中的公式 这里有一些存储在各种类型张量的公用数据集类型: 3维=时间序列 4维=图像 5维=视频 几乎所有的这些张量的共同之处是样本量...这是一张我美丽无边的猫咪(Dove)的照片,750 x750像素,这意味着我们能用一个3D张量来表示它: (750,750,3) My beautiful cat Dove (750 x 750 pixels...x 1080像素),每秒15帧(总共4500帧),颜色深度为3的视频,我们可以用4D张量来存储它: (4500,1920,1080,3) 当我们有多段视频的时候,张量中的第五个维度将被使用。...我们姑且考虑下这个例子以便说明一个问题:在现实世界中,我们有时需要尽可能的缩小样本数据以方便的进行处理计算,除非你有无尽的时间。
Tensorflow 刚刚在 TF.js 姿势检测 API 中推出了第一个 3D 模型。...TensorFlow.js 社区对 3D 姿态估计越来越感兴趣,这为健身、医疗和运动捕捉等应用开辟了新的设计机会。一个很好的例子是使用 3D 动作在浏览器上驱动角色动画 。...所提出的方法使用称为 GHUM 的 3D 统计人体模型来获取姿势地面实况。在此过程中,研究人员拟合了 GHUM 模型并使用度量空间中的真实关键点坐标对其进行了扩展。...由于 3D-2D 投影的性质,3D 中的多个点可以投影到同一个 2d 点上(即具有 X 和 Y 但不同的 Z)。因此拟合结果可能不明确,导致给定输入图像或视频帧的几个真实的身体姿势。...该模型在裁剪图像上进行训练,预测对象臀部中心原点的相对坐标中的 3D 位置。 MediaPipe 与 TF.js 运行时
在我看来,上面提到的指数运算与对数运算不在通知模块以及没有提供以其他自然数为底的对数运算,应该应该是TensorFlow中的遗留问题,希望能够在正式版中得到修正。...这就得益于TensorFlow中的Broadcasting机制。...),a中的数据每一行都填充a原来的数据,也就是[1,2,3],然后在与b进行运算。...当然,在TensorFlow的Broadcasting机制运行过程中,上述操作只是理论的,并不会真正的将a的形状变成(2,2,3,),更不会将每一行填充[1,2,3],只是虚拟进行操作,真正计算时,依旧是使用原来的张量...,指的是一种更宽泛的长度(距离)概念,只要满足非负、自反、三角不等式就可以称之为距离。
TensorFlow的“延迟执行”模型:TensorFlow是为分布式计算构建的。在开始实际将计算任务发送到各种计算机之前,必须知道要计算的内容,即执行图。...: TensorFlow和NumPy的是朋友:准备计算图时,你只有操纵TensorFlow张量和如命令tf.matmul,tf.reshape等等。...实际上,在最大池层中,神经元输出以2x2为一组进行处理,只保留最多一个。 有一种更简单的方法:如果您以2像素而不是1像素的速度滑过图像,则还会获得较少的输出值。...要将我们的代码切换到卷积模型,我们需要为卷积层定义适当的权重张量,然后将卷积图层添加到模型中。 我们已经看到卷积层需要以下形状的权重张量。这是初始化的TensorFlow语法: ?...我们距离我们的模型建立了100行Python / TensorFlow距离世界纪录就差0.4个百分点。 要完成,这是对我们更大的卷积网络的差异。
前言 Github: https://github.com/yingzk/MyML 博客: https://www.yingjoy.cn/ 在机器学习中,经常需要使用距离和相似性计算的公式,在做分类时,...欧式距离(Euclidean Distance) 欧式距离是最易于理解的一种距离计算方法,也称欧几里得距离,源自欧式空间中两点的距离公式,是指在m维空间两点之间的真实距离,欧式距离在机器学习中使用的范围比较广...标准化欧式距离(Standardized Euclidean Distance ) 在长方体区域进行聚类的时候,普通的距离计算公式无法满足需求,按照普通距离计算后进行聚类出的大多数是圆形区域,这时候需要采用标准化欧氏距离计算公式...曼哈顿距离(Manhattan Distance) 从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?...这篇文章中曼哈顿距离,欧式距离,明式距离,切比雪夫距离的区别 给了一个很形象的解释如下: 比如,有同样两个人,在纽约准备到北京参拜天安门,同一个地点出发的话,按照欧式距离来计算,是完全一样的。
在 TensorFlow 创建静态图的同时,PyTorch 创建动态图。 在 TensorFlow 中,必须首先定义整个计算图,然后运行模型,而在 PyTorch 中,可以平行于模型构建来定义图。...如上图中的前三个圆圈所示,周长中的每个像元恰好具有一个像素,而最后一个像元在周长中填充了多个像素。...前面的像素方程式的总和可以重写如下: 在积分图像中,可以通过将四个数组(如前面的方程式所示)相加来计算图像中任何矩形区域的面积,而不是针对所有单个像素的总和进行六个内存访问。...然后,利用这些信息,我们计算归一化的输入。 微型批量的输出计算为比例(γ)乘以归一化输入,再加上偏移量(β)。 在 TensorFlow 中,这可以表示如下。...在本节中,我们将图像转换为张量。 我们通过将图像转换为数组来从图像中生成张量,然后使用 NumPy 的expand_dims()函数扩展数组的形状。
点击这里查看PDF版本 Github: https://github.com/yingzk/MyML 博 客: https://www.yingjoy.cn/ 前言 在机器学习中,经常需要使用距离和相似性计算的公式...欧式距离(Euclidean Distance) 欧式距离是最易于理解的一种距离计算方法,也称欧几里得距离,源自欧式空间中两点的距离公式,是指在m维空间两点之间的真实距离,欧式距离在机器学习中使用的范围比较广...标准化欧式距离(Standardized Euclidean Distance ) 在长方体区域进行聚类的时候,普通的距离计算公式无法满足需求,按照普通距离计算后进行聚类出的大多数是圆形区域,这时候需要采用标准化欧氏距离计算公式...曼哈顿距离(Manhattan Distance) 从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?...这篇文章中曼哈顿距离,欧式距离,明式距离,切比雪夫距离的区别 给了一个很形象的解释如下: 比如,有同样两个人,在纽约准备到北京参拜天安门,同一个地点出发的话,按照欧式距离来计算,是完全一样的。
大家好,又见面了,我是你们的朋友全栈君。 一、概率统计基本知识 1.样本均值 样本均值(Mean)是在总体中的样本数据的平均值。...协方差的计算公式如下: 5.协方差矩阵 在统计学与概率论中,协方差矩阵的每个元素是各个向量元素之间的协方差,是从标量随机变量到高维度随机向量的自然推广。...假设我们有三个n维随机变量X,Y,Z(一般而言,在实际应用中这里的随机变量就是数据的不同维度。切记:协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的协方差。)...Mahalanobis)提出的,表示点与一个分布之间的距离。它是一种有效的计算两个未知样本集的相似度的方法。...3.两个样本点的马氏距离计算示例: Matlab计算协方差矩阵验算(矩阵a的列代表属性,行代表样本点): 得到协方差矩阵后,我们就可以计算出v和x之间的马氏距离了: Matlab验算:
公式是我们在以前的理论部分中建立的公式。该tf.reshape命令将我们的28x28图像转换为784像素的单个向量。重塑命令中的“-1”表示“计算机,计算出来,只有一种可能性”。...TensorFlow的“延迟执行”模型:TensorFlow是为分布式计算构建的。在开始实际将计算任务发送到各种计算机之前,必须知道要计算的内容,即执行图。...和NumPy的是朋友:准备计算图时,你只有操纵TensorFlow张量和如命令tf.matmul,tf.reshape等等。...要将我们的代码切换到卷积模型,我们需要为卷积层定义适当的权重张量,然后将卷积图层添加到模型中。 我们已经看到卷积层需要以下形状的权重张量。这是初始化的TensorFlow语法: ?...我们距离我们的模型建立了100行Python / TensorFlow距离世界纪录就差0.4个百分点。 要完成,这是对我们更大的卷积网络的差异。
博主遇到一个问题,在anaconda中安装并配置好tensorflow和opencv后,直接输入jupyter notebook启动jupyter notebook在jupyter notebook中输入命令...,如import tensorflow并不能调用tensorflow的开发包。...原因是:如果此时直接启动jupyter,此时的jupyter是基于整个anaconda的python,而不是对应的tensorflow虚拟环境,因此进入此虚拟环境后需要重新安装jupyter notebook.../bin/activatesource activate tensorflow进入虚拟环境以后,输入命令:conda install jupyter直到安装包下载完成,在tensorflow目录下就安装了...jupyter,此时在tensorflow虚拟环境下,输入命名:jupyter notebook此时就可以调用tensorflow和opencv的库,如下图:?
领取专属 10元无门槛券
手把手带您无忧上云