, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)# 创建多层感知机模型mlp = MLPClassifier...(hidden_layer_sizes=(100,), max_iter=500, random_state=0)# 在训练集上训练模型mlp.fit(X_train, y_train)# 在测试集上进行预测...Flattenfrom tensorflow.keras.optimizers import Adam# 加载MNIST数据集(x_train, y_train), (x_test, y_test)..., y_train, epochs=5, batch_size=32, validation_data=(x_test, y_test))# 在测试集上评估模型test_loss, test_acc =..., X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)# 创建多层感知机模型mlp = MLPClassifier