首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

MySQL允许在唯一索引字段中添加多个NULL值

今天正在吃饭,一个朋友提出了一个他面试中遇到的问题,MySQL允许在唯一索引字段中添加多个NULL值。...); INSERT INTO `test` VALUES (2, NULL); 并没有报错,说明MySQL允许在唯一索引字段中添加多个NULL值。...我们可以看出,此约束不适用于除BDB存储引擎之外的空值。对于其他引擎,唯一索引允许包含空值的列有多个空值。...网友给出的解释为: 在sql server中,唯一索引字段不能出现多个null值 在mysql 的innodb引擎中,是允许在唯一索引的字段中出现多个null值的。...**根据这个定义,多个NULL值的存在应该不违反唯一约束,所以是合理的,在oracel也是如此。 这个解释很形象,既不相等,也不不等,所以结果未知。

10K30

SQL 获取一行中多个字段的最大值

需求描述: 在 chaos(id,v1,v2,v3) 表中获取每个 id 对应的 v1、v2、v3 字段的最大值,v1、v2、v3 同为数值类型。...v12 = IF(v1 > v2, v1, v2) v_max = IF(v12 > v3, v12, v3) 如果 chaos 再增加两个数值列 v4、v5,要同时比较这五个字段的值,嵌套的 IF...那么,有没有比较简单且通用的实现呢? 有。先使用 UNION ALL 把每个字段的值合并在一起,再根据 id 分组求得最大值。...id, v3 AS v FROM chaos) SELECT id, MAX(v) AS v_max FROM chaos_union GROUP BY id 要是,不想对每个字段都用...使用 CONCAT_WS() 函数将 v1、v2、v3 的值组合成使用逗号分割的字符串; 在递归语句使用 SUBSTRING_INDEX() 根据逗号分解字符串的每个数值; 根据 id 分组求得最大值。

11.5K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    NewLife.XCode中如何借助分部抽象多个具有很多共同字段的实体类

    背景: 两个实体类:租房图片、售房图片 这两个表用于存储房源图片记录,一个房源对应多个图片,两个表的差别就在于一个业务关联字段。...由于XCode是充血模型,我们可以为这两个实体类做一个统一的基类来达到我的目的,但是这个统一的基类里面无法访问子类的字段,编码上很不方便。 这一次,我们用分部接口!...先来看看这两个实体类 image.png image.png 这两个实体类,就RentID和SaleID字段的不同,其它都一样,包括名字、类型、业务意义。...实际上也不应该修改原有的接口文件,因为原有的接口位于实体类的数据类文件中,那是随时会被新的代码生成覆盖。...这里为了实体接口的精简和独立,实体接口并没有继承IEntity,实际上实体类都继承了这两个接口。 所以,我们可以先转为IHouseImage接口,然后随意操作,当然你也可以在接口中增加各种方法。

    2.2K60

    【Python】PySpark 数据计算 ③ ( RDD#reduceByKey 函数概念 | RDD#reduceByKey 方法工作流程 | RDD#reduceByKey 语法 | 代码示例 )

    一、RDD#reduceByKey 方法 1、RDD#reduceByKey 方法概念 RDD#reduceByKey 方法 是 PySpark 中 提供的计算方法 , 首先 , 对 键值对 KV...Y ; 具体操作方法是 : 先将相同 键 key 对应的 值 value 列表中的元素进行 reduce 操作 , 返回一个减少后的值,并将该键值对存储在RDD中 ; 2、RDD#reduceByKey...; 最后 , 将减少后的 键值对 存储在新的 RDD 对象中 ; 3、RDD#reduceByKey 函数语法 RDD#reduceByKey 语法 : reduceByKey(func, numPartitions...; 两个方法结合使用的结果与执行顺序无关 ; 可重入性 ( commutativity ) : 在多任务环境下 , 一个方法可以被多个任务调用 , 而不会出现数据竞争或状态错误的问题 ; 以便在并行计算时能够正确地聚合值列表...3), ("Jerry", 12), ("Jerry", 21)] 对 值 Value 进行的聚合操作就是相加 , 也就是把同一个 键 Key 下的多个 Value 值 进行相加操作 , # 应用 reduceByKey

    75920

    PySpark数据计算

    本文详细讲解了PySpark中的常用RDD算子,包括map、flatMap、reduceByKey、filter、distinct和sortBy。...在 PySpark 中,所有的数据计算都是基于 RDD(弹性分布式数据集)对象进行的。RDD 提供了丰富的成员方法(算子)来执行各种数据处理操作。...【拓展】链式调用:在编程中将多个方法或函数的调用串联在一起的方式。在 PySpark 中,链式调用非常常见,通常用于对 RDD 进行一系列变换或操作。...通过链式调用,开发者可以在一条语句中连续执行多个操作,不需要将每个操作的结果存储在一个中间变量中,从而提高代码的简洁性和可读性。...三、reduceByKey算子定义:reduceByKey算子用于将具有相同键的值进行合并,并通过指定的聚合函数生成一个新的键值对 RDD。

    14810

    Excel公式技巧17: 使用VLOOKUP函数在多个工作表中查找相匹配的值(2)

    我们给出了基于在多个工作表给定列中匹配单个条件来返回值的解决方案。本文使用与之相同的示例,但是将匹配多个条件,并提供两个解决方案:一个是使用辅助列,另一个不使用辅助列。 下面是3个示例工作表: ?...图3:工作表Sheet3 示例要求从这3个工作表中从左至右查找,返回Colour列中为“Red”且“Year”列为“2012”对应的Amount列中的值,如下图4所示的第7行和第11行。 ?...16:使用VLOOKUP函数在多个工作表中查找相匹配的值(1)》。...解决方案2:不使用辅助列 首先定义两个名称。注意,在定义名称时,将活动单元格放置在工作表Master的第11行。...D1:D10 传递到INDEX函数中作为其参数array的值: =INDEX(Sheet3!

    14.1K10

    Excel公式技巧16: 使用VLOOKUP函数在多个工作表中查找相匹配的值(1)

    在某个工作表单元格区域中查找值时,我们通常都会使用VLOOKUP函数。但是,如果在多个工作表中查找值并返回第一个相匹配的值时,可以使用VLOOKUP函数吗?本文将讲解这个技术。...最简单的解决方案是在每个相关的工作表中使用辅助列,即首先将相关的单元格值连接并放置在辅助列中。然而,有时候我们可能不能在工作表中使用辅助列,特别是要求在被查找的表左侧插入列时。...图3:工作表Sheet3 示例要求从这3个工作表中从左至右查找,返回Colour列中为“Red”对应的Amount列中的值,如下图4所示。 ?...B1:D10"),3,0) 其中,Sheets是定义的名称: 名称:Sheets 引用位置:={"Sheet1","Sheet2","Sheet3"} 在公式中使用的VLOOKUP函数与平常并没有什么不同...B:B"}),$A3) INDIRECT函数指令Excel将这个文本字符串数组中的元素转换为单元格引用,然后传递给COUNTIF函数,同时单元格A3中的值作为其条件参数,这样上述公式转换成: {0,1,3

    25.5K21

    Python+大数据学习笔记(一)

    PySpark使用 pyspark: • pyspark = python + spark • 在pandas、numpy进行数据处理时,一次性将数据读入 内存中,当数据很大时内存溢出,无法处理;此外...pyspark: • 在数据结构上Spark支持dataframe、sql和rdd模型 • 算子和转换是Spark中最重要的两个动作 • 算子好比是盖房子中的画图纸,转换是搬砖盖房子。...有 时候我们做一个统计是多个动作结合的组合拳,spark常 将一系列的组合写成算子的组合执行,执行时,spark会 对算子进行简化等优化动作,执行速度更快 pyspark操作: • 对数据进行切片(shuffle...中的DataFrame • DataFrame类似于Python中的数据表,允许处理大量结 构化数据 • DataFrame优于RDD,同时包含RDD的功能 # 从集合中创建RDD rdd = spark.sparkContext.parallelize...,dataType:该字段的数据类型, nullable: 指示该字段的值是否为空 from pyspark.sql.types import StructType, StructField, LongType

    4.6K20

    Pyspark学习笔记(五)RDD操作(三)_键值对RDD转换操作

    ,每个元素是一个键值对,键(key)为省份名,值(Value)为一个list 1.keys() 该函数返回键值对RDD中,所有键(key)组成的RDD pyspark.RDD.keys # the example...RDD, 该RDD的键(key)是使用函数提取出的结果作为新的键, 该RDD的值(value)是原始pair-RDD的值作为值。...RDD的每个元素中的值(value),应用函数,作为新键值对RDD的值,而键(key)着保持原始的不变 pyspark.RDD.mapValues # the example of mapValues...RDD的每个元素中的值(value),应用函数,作为新键值对RDD的值,并且将数据“拍平”,而键(key)着保持原始的不变 所谓“拍平”和之前介绍的普通RDD的mapValues()是一样的...,在我们讲普通RDD的 fold 操作时说过,zeroValue出现的数目应该是 (partition_num + 1) ,参考Pyspark学习笔记(五)RDD操作(二)_RDD行动操作 中的11.fold

    1.9K40

    Spark笔记15-Spark数据源及操作

    数据输入源 Spark Streaming中的数据来源主要是 系统文件源 套接字流 RDD对列流 高级数据源Kafka 文件流 交互式环境下执行 # 创建文件存放的目录 cd /usr/loca/spark...操作,再进行拍平 wordCounts = words.map(lambda x:(x,1)).reduceByKey(lambda a,b: a+b) wordCounts.pprint() # 在交互式环境下查看...) ssc.start() ssc.awaitTermination() # 服务端的角色 # 在linux中:nc -lk 9999 cd /usr/local/spark/mycode/...server.listen(1) while 1: conn,addr = server.accept() # 使用两个值进行接受 print("connect success!...不同的topic消息分开存储 用户不必关心数据存放位置,只需要指定消息的topic即可产生或者消费数据 partition:每个topic分布在一个或者多个分区上 Producer:生产者,负责发布消息

    80010

    Spark编程实验二:RDD编程初级实践

    一、目的与要求 1、熟悉Spark的RDD基本操作及键值对操作; 2、熟悉使用RDD编程解决实际具体问题的方法。...,在pyspark中通过编程来计算以下内容: (1)该系总共有多少学生; (2)该系共开设了多少门课程; (3)Tom同学的总成绩平均分是多少; (4)求每名同学的选修的课程门数; (5)该系DataBase...,每个文件里包含了很多数据,每行数据由4个字段的值构成,不同字段之间用逗号隔开,4个字段分别为orderid,userid,payment和productid,要求求出Top N个payment值。...案例二:文件排序 任务描述:有多个输入文件,每个文件中的每一行内容均为一个整数。...在实验过程中,需要注意以下几点:(1)选择合适的算子,例如filter、map、reduceByKey、sortByKey等,以及合适的lambda表达式来进行数据处理和计算。

    3800

    spark入门框架+python

    API即pyspark,所以直接启动即可 很简单使用pyspark便进入了环境: ?...但是在命令行中总归是不方便,所以下面的案例均在IPython Notebook中进行 IPython Notebook 使用IPython Notebook开发更加方便 安装 sudo apt-get...groupbykey:通过key进行分组 在java中返回类型还是一个JavaPairRDD,第一个类型是key,第二个是Iterable里面放了所有相同key的values值 ?...takeOrdered(n [, key=None]) :返回经过排序后的RDD中前n个元素 ? min,max,mean,stdev: ? fold:对每个分区给予一个初始值进行计算: ?...foreach:遍历RDD中的每个元素 saveAsTextFile:将RDD元素保存到文件中(可以本地,也可以是hdfs等文件系统),对每个元素调用toString方法 textFile:加载文件 ?

    1.5K20

    Python大数据之PySpark(七)SparkCore案例

    ,适合文本分析;默认的方式 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义; 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词...; # cut_all 参数用来控制是否采用全模式; # HMM 参数用来控制是否使用 HMM 模型; # use_paddle 参数用来控制是否使用paddle模式下的分词模式,paddle模式采用延迟加载方式...需求 1-首先需要将数据读取处理,形成结构化字段进行相关的分析 2-如何对搜索词进行分词,使用jieba或hanlp jieba是中文分词最好用的工具 步骤 1-读取数据...(5)) # TODO*3 - 完成需求2:用户搜索点击统计 print("=============完成需求2:用户搜索点击统计==================") # 根据用户id和搜索的内容作为分组字段进行统计...reduceByKey 3-sougou的案例需要联系2-3遍 练习流程: 首先先要将代码跑起来 然后在理解代码,这一段代码做什么用的 在敲代码,需要写注释之后敲代码

    28150

    C# 委托Func() 中 GetInvocationList() 方法的使用 | 接收委托多个返回值

    在日常使用委托时,有以下常用方法 方法名称 说明 Clone 创建委托的浅表副本。 GetInvocationList 按照调用顺序返回此多路广播委托的调用列表。...RemoveImpl 调用列表中移除与指定委托相等的元素 ---- GetInvocationList() 的用途 当委托有多个返回值时 当你编写一个 delegate委托 或 Func泛型委托...,并为实例绑定多个方法时,每个方法都有一个返回值。...调用委托后,只能获取到最后一个调用方法的返回值。 ---- 使用 GetInvocationList()  GetInvocationList() 能够返回 这个委托的方法链表。...通过使用循环,把每个方法顺序调用一次,每次循环中都会产生当前调用方法的返回值。

    2.8K20

    Filebeat配置顶级字段Logstash在output输出到Elasticsearch中的使用

    ) paths: - /var/log/nginx/access.log tags: ["nginx-access-log"] fields: #额外的字段(表示在...filebeat收集Nginx的日志中多增加一个字段log_source,其值是nginx-access-21,用来在logstash的output输出到elasticsearch中判断日志的来源,从而建立相应的索引...(表示在filebeat收集Nginx的日志中多增加一个字段log_source,其值是nginx-error-21,用来在logstash的output输出到elasticsearch中判断日志的来源...,从而建立相应的索引,也方便后期再Kibana中查看筛选数据,结尾有图) fields_under_root: true #设置为true,表示上面新增的字段是顶级参数。...data_type => "list" db => "0" key => "nginx_log" } } output { #根据redis键 messages_secure 对应的列表值中

    1.2K40

    用PySpark开发时的调优思路(下)

    数据倾斜调优 相信我们对于数据倾斜并不陌生了,很多时间数据跑不出来有很大的概率就是出现了数据倾斜,在Spark开发中无法避免的也会遇到这类问题,而这不是一个崭新的问题,成熟的解决方案也是有蛮多的,今天来简单介绍一些比较常用并且有效的方案...首先我们要知道,在Spark中比较容易出现倾斜的操作,主要集中在distinct、groupByKey、reduceByKey、aggregateByKey、join、repartition等,可以优先看这些操作的前后代码...而为什么使用了这些操作就容易导致数据倾斜呢?大多数情况就是进行操作的key分布不均,然后使得大量的数据集中在同一个处理节点上,从而发生了数据倾斜。...Plan C:调高shuffle并行度 # 针对Spark SQL --conf spark.sql.shuffle.partitions=1000 # 在配置信息中设置参数 # 针对RDD rdd.reduceByKey...(1000) # 默认是200 Plan D:分配随机数再聚合 大概的思路就是对一些大量出现的key,人工打散,从而可以利用多个task来增加任务并行度,以达到效率提升的目的,下面是代码demo,分别从

    2.1K40
    领券