首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在pine文字研究中,有没有可能计算一个数字的正弦?

在Pine Script(通常用于TradingView平台)中进行数学计算,包括计算一个数字的正弦值,是完全可能的。Pine Script是一种专门为TradingView图表和策略开发设计的脚本语言,它支持基本的数学运算和一些高级数学函数。

基础概念

Pine Script是一种基于时间序列数据的脚本语言,主要用于编写自定义的技术指标和交易策略。它支持多种数学函数,包括三角函数、指数函数、对数函数等。

相关优势

  • 灵活性:Pine Script允许用户自定义复杂的计算和逻辑。
  • 集成性:可以直接在TradingView图表上使用,无需额外的软件或环境。
  • 易用性:语法简洁,易于学习和使用。

类型

Pine Script的函数可以分为以下几类:

  • 数学函数:如sin()cos()tan()等。
  • 统计函数:如avg()stdev()等。
  • 时间函数:如time()bar_index()等。
  • 逻辑函数:如if()else()等。

应用场景

  • 技术指标:用户可以编写自定义的技术指标,如移动平均线、相对强弱指数(RSI)等。
  • 交易策略:用户可以编写交易策略,进行自动化交易或回测。
  • 数据可视化:用户可以自定义图表上的显示内容,如添加额外的线条或标记。

示例代码

以下是一个简单的Pine Script示例,计算并绘制一个数字的正弦值:

代码语言:txt
复制
//@version=5
indicator("Sine Wave Example")

valueToPlot = 45 // 输入要计算正弦值的数字(以度为单位)
sineValue = sin(valueToPlot * pi / 180) // 将度转换为弧度并计算正弦值

plot(sineValue, title="Sine Value", color=color.blue)

解决问题的步骤

  1. 确定输入值:首先确定要计算正弦值的数字。
  2. 转换角度单位:Pine Script中的sin()函数接受弧度作为参数,因此需要将度转换为弧度。公式为:弧度 = 度 * π / 180。
  3. 计算正弦值:使用sin()函数计算正弦值。
  4. 绘制结果:使用plot()函数在图表上绘制计算结果。

参考链接

通过以上步骤和示例代码,你可以在Pine Script中轻松计算并绘制一个数字的正弦值。

相关搜索:有没有可能获得在python拆分函数中执行的最后一个值?计算一个数字在PHP中的百分比有没有可能只使用CSS,而不使用硬编码的数字,以获得与另一个元素相同的计算值?在Android 12中有没有可能得到一个未裁剪的闪屏?在Povray中有没有一种简单的方法来计算对象在渲染图像中可能出现的位置?有没有可能从python中创建一个exe文件,在每次计算机启动时播放音乐?有没有可能创建一个python脚本,在每天给定的时间在目录中查找文件?有没有办法在java中创建一个只计算请求的多线程?有没有办法在Typescript中声明一个连续的字符串文字联合?在llvm中,有没有可能获得一个alloca相对于一个load的最后一个storeinst?在嵌套列表中,有没有可能对安莉元素有一个单独的悬停效果?有没有可能在C中使用两个缓冲区精确地计算一个单词在文件中的出现频率?如何选择“在一个查询中计算所有表中的所有名称和数字”?在Django中,有没有可能在自己的字段中有相同的模型,但有多个而不是一个?有没有可能在java中创建一个在满足您的条件之前不返回的递归方法?在BigQuery中,如果一个方根中的计算结果为负,如何将一个数字变为零?在Heroku中,有没有可能在没有专用dyno的情况下有一个工作队列?有没有可能用dplyr在一个管道中过滤一个数据帧,其中的输出是由summarize创建的?在excel VBA中创建一个函数来计算一组循环数字的平均值。如何计算出一个数字在矩阵中的位置,以及如何删除和添加它?
相关搜索:
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

挑战单卡单日训练BERT,ViT作者推荐

Pine 发自 凹非寺 量子位 | 公众号 QbitAI 单个GPU,只花一天时间,能把BERT训练成什么样? 现在,终于有研究人员做这件事了,在有限的计算条件之下看看语言模型的真实性能如何。...要知道在以往,大多数专业人员的关注点都在极端计算的条件下的语言模型性能。 但这样的语言训练模型环境,对很多研究人员和从业人员是不可能存在的。...因此这个单天单个GPU的挑战,就有网友称是一个最希望看到的基准。 连ViT作者,谷歌大脑研究员Lucas Beyer都发文推荐,称这是一个令人耳目一新的转变。...并且在调整的过程中,整体基调都是围绕“实际使用”进行的,避免跳转到专业的设置,为此,研究人员将所有内容都保持在PyTorch框架的实现级别上。...具体的优化和其他调整如下: 减少注意力头的数量来降低梯度成本:禁用所有QKV偏差; 禁用所有线性层偏差,通过加速梯度计算,不会对模型大小产生明显影响; 实现比例正弦位置嵌入,相较于学习或非比例正弦嵌入有增量收益

27920

【STM32F407的DSP教程】第24章 DSP变换运算-傅里叶变换

24.4.4 离散傅里叶变换(Discrete Fourier transform) 为了在科学计算和数字信号处理等领域使用计算机进行傅里叶变换,必须将函数定义在离散点上而非连续域内,且须满足有限性或周期性条件...计算复杂度的降低以及数字电路计算能力的发展使得DFT成为在信号处理领域十分实用且重要的方法。 24.4.5 傅里叶变换家族 下表列出了傅里叶变换家族的成员。...用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。...但是对于非周期性的信号,我们需要用无穷多不同频率的正弦曲线来表示,这对于计算机来说是不可能实现的。...所以对于离散信号的变换只有离散傅里叶变换(DFT)才能被适用,对于计算机来说只有离散的和有限长度的数据才能被处理,对于其它的变换类型只有在数学演算中才能用到,在计算机面前我们只能用DFT方法,后面我们要理解的也正是

85710
  • 【STM32F429的DSP教程】第24章 DSP变换运算-傅里叶变换

    24.4.4 离散傅里叶变换(Discrete Fourier transform) 为了在科学计算和数字信号处理等领域使用计算机进行傅里叶变换,必须将函数定义在离散点上而非连续域内,且须满足有限性或周期性条件...计算复杂度的降低以及数字电路计算能力的发展使得DFT成为在信号处理领域十分实用且重要的方法。 24.4.5 傅里叶变换家族 下表列出了傅里叶变换家族的成员。...用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。...但是对于非周期性的信号,我们需要用无穷多不同频率的正弦曲线来表示,这对于计算机来说是不可能实现的。...所以对于离散信号的变换只有离散傅里叶变换(DFT)才能被适用,对于计算机来说只有离散的和有限长度的数据才能被处理,对于其它的变换类型只有在数学演算中才能用到,在计算机面前我们只能用DFT方法,后面我们要理解的也正是

    85230

    【STM32H7的DSP教程】第24章 DSP变换运算-傅里叶变换

    24.4.4 离散傅里叶变换(Discrete Fourier transform) 为了在科学计算和数字信号处理等领域使用计算机进行傅里叶变换,必须将函数定义在离散点上而非连续域内,且须满足有限性或周期性条件...计算复杂度的降低以及数字电路计算能力的发展使得DFT成为在信号处理领域十分实用且重要的方法。 24.4.5 傅里叶变换家族 下表列出了傅里叶变换家族的成员。...用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。...但是对于非周期性的信号,我们需要用无穷多不同频率的正弦曲线来表示,这对于计算机来说是不可能实现的。...所以对于离散信号的变换只有离散傅里叶变换(DFT)才能被适用,对于计算机来说只有离散的和有限长度的数据才能被处理,对于其它的变换类型只有在数学演算中才能用到,在计算机面前我们只能用DFT方法,后面我们要理解的也正是

    81510

    ​探秘 Web 水印技术

    曾经面临的浏览器兼容问题现在也不再是问题,该方案已逐渐流行起来。 SVG 方案 对于纯文字的水印来说,有没有办法不生成图片而直接实现平铺呢?...在现代,随着计算机网络技术的发展,数字产品的信息安全和版权保护也已成为信息隐匿技术的一个重要课题。隐写术在数字音频、数字视频和数字图像领域有着非常广泛的应用。...Web 上基于 DOM 的盲水印大都不靠谱,而另一方面数字图像是信息隐藏和数字水印领域研究最多和最早的一种载体,相较于 Web,数字图像领域有着更为成熟的数字水印算法。...频域水印 将数字图像用一个矩阵来表示,是图像的空间域表示方法,LSB 就是在图像的空间域隐藏信息,鲁棒性较差。而在图像信号的频域(变换域)中隐藏信息要比在空间域中隐藏信息具有更好的鲁棒性。...在频域中隐藏信息就是傅里叶变换在数字图像处理领域的一个典型应用场景。

    2.4K22

    从零开始学习PYTHON3讲义(十二)画一颗心送给你

    同其它绘图方式相比,更简单易用,能让使用者把工作的主要精力集注在公式和算法上而不是绘图本身。此外科学绘图的工具包普遍精度更高,数据、图的对应关系准确,从而保证基于图的研究工作顺利进行。...但在这里,x是一个列表,包含200个元素。那两者就完全不同了。内置的math.sin一次调用只能处理一个数字。np.sin是一次处理整个数组。...第一行代码是在画面中增加注释性的文字,其实只有一条曲线意义并不大。但多条曲线,如果没有注释的文字,看起来就很困难了。...上图是增加了注释文字和标题之后的效果。你可能注意到了,图片窗口中有菜单是可以直接保存图片的。这样的图片直接引用到论文中效果一流。...科学绘图库我们使用了已经内置的正弦函数作为示例开始,这样为了降低使用的难度,专注解释绘图操作的机理。 在实际应用中,要绘制的通常都是很复杂的数学公式,这时候前面讲过的数学内容就用得上了。

    1.5K30

    滑模变结构控制理论及应用 2012年

    对正弦波输出变压变频电源三种SPWM调制方式厦数字化控制策略进行了研究,以期得到一种较理想的调制方式,使变压变频电源的开关管损耗、可靠性及输出电压质量得以改善。...本文针对正弦波输出变压变频电源SPWM调制方式及数字化控制策略进行了研究,以TMS320F240数字信号处理器为主控芯片,以期得到一种较理想的调制方法,实现逆变电源变压、变频输出。...在正弦波逆变电源数字化控制方法中,目前国内外研究得比较多的主要有数字PID控制、无差拍控制、双环反馈控制、重复控制、滑模变结构控制、模糊控制以及神经网络控制等。...THD值的计算公式为 式中:Ua1为滤波器输出电压基波分量的有效值;Uai为滤波器输山电压各次谐波分量的有效值。...控制程序由主程序和一个定时中断程序组成,主程序主要完成读取给定电压,过流判断,平均值外环计算等功能。定时中断程序完成采样输出电压,实时计算出下个开关周期输出的脉宽。

    72400

    傅里叶分析的最通俗解释!

    cos(0t)就是一个周期无限长的正弦波,也就是一条直线!所以在频域,0频率也被称为直流分量,在傅里叶级数的叠加中,它仅仅影响全部波形相对于数轴整体向上或是向下而不改变波的形状。...于是用了一个小时左右的时间在试卷上洋洋洒洒写了本文的第一草稿。 你们猜我得了多少分? 6分 没错,就是这个数字。...傅里叶在论文中运用正弦曲线来描述温度分布,并提出一个很有争议性的结论:任何连续周期信号可以由一组适当的正弦曲线组合而成。(这句话是不是很耳熟?高数课听过,信号与系统课听过,数字信号处理课也听过。)...这篇论文在竞争中获胜,傅里叶获得科学院颁发的奖金。但是评委——可能是由于拉格朗日的坚持——仍从文章的严格性和普遍性上给予了批评,以致这篇论文又未能正式发表。...,从X射线衍射模式揭示蛋白质的结构,为NASA分析数字信号,研究乐器的声学原理,改进水循环的模型,寻找脉冲星(自转的中子星),用核磁共振研究分子结构。

    62520

    【深度学习 | Transformer】释放注意力的力量:探索深度学习中的 变形金刚,一文带你读通各个模块 —— Positional Encoding(一)

    ,但是此时的e^i 的权重W_P是可以被learn的 WP,根据研究表明这个WP learn 有人做过了在convolution中seq to seq中类似的学习参数做法效果并不是很好,还有说其实会添加很多的不必要的参数学习等...您可能想知道正弦和余弦的这种组合如何表示位置 / 顺序?其实很简单,假设你想用二进制格式来表示一个数字,会怎样可以发现不同位之间的变化,在每个数字上交替,第二低位在每两个数字上轮换,依此类推。...这样,不同位置和不同维度的位置编码会得到不同的数值,形成一个独特的向量表示, 正弦位置编码的另一个特点是它允许模型毫不费力地关注相对位置。...周期性: 使用正弦和余弦函数能够使位置编码具有周期性。使得位置编码的值在每个维度上循环变化。这对于表示序列中的不同位置非常重要,因为不同位置之间可能存在重要的依赖关系。...连续性: 正弦和余弦函数在输入空间中是连续的。这意味着相邻位置之间的位置编码也是连续的,有助于保持输入序列中的顺序信息的连贯性。

    30620

    跟着leedcode刷算法 -- 字符串2

    题三: 单词拆分 给你一个字符串 s 和一个字符串列表 wordDict 作为字典,判定 s 是否可以由空格拆分为一个或多个在字典中出现的单词。 说明: 拆分时可以重复使用字典中的单词。...注意你可以重复使用字典中的单词。...wordDict 中的所有字符串 互不相同 相关标签 字典树 记忆化搜索 哈希表 字符串 动态规划 动态规划思路: 对s进行拆分,s[0..j-1]和s[j:i]两个部分,其中j = 0..i-1 判断以上两个部分是否在...s 和一个包含非空单词列表的字典 wordDict,在字符串中增加空格来构建一个句子,使得句子中所有的单词都在词典中。...返回所有这些可能的句子。 说明: 分隔时可以重复使用字典中的单词。 你可以假设字典中没有重复的单词。

    31400

    斯坦福的神经网络采用这种激活函数,竟高保真还原各种图像视频

    基于梯度的监督学习 有没有想过对神经网络中函数的导数进行监督学习? SIREN就这么做了。...目前,已经有专业的网友对论文进行了详细解析,在不到一个小时的时间里,清晰易懂地介绍了论文核心内容。 ?...△ Vincent Sitzmann 主作者Vincent Sitzmann是刚毕业于斯坦福大学的博士,目前在麻省理工学院攻读博士后,主要研究的方向包括神经场景表示、计算机视觉和深度学习。...这是一个人均博士水平的研究团队,对于计算机视觉方向的研究非常深入。...在计算机视觉日渐发达的今天,行业希望机器达成的远不仅是“像照相机一样,能够对图像进行简单的二维复制”,而是像人类一样,能够拥有视觉感知能力。

    91930

    信号上升边与系统带宽

    若暂时忽略相位,在频域中绘制一个正弦波,仅需一个数据点,这就是要在频域中研究问题的关键原因。在时域中可能要用上千个电压-时间数据点表示波形,在频域中则变换为一个幅度-频率数据点。...八、带宽对上升边的影响带宽用于表示频谱中最高的有效正弦波频率分量值。带宽的选择对时域波形的最短上升边有直接的影响。对于数字信号,带宽同样指的是信号频谱中的频率范围。...为了减小电磁干扰,设计时应在所有信号中采用尽可能低的带宽。高于这个带宽时,谐波幅度就比1/f下降得快,对辐射的影响就会小一些。将带宽保持在最低值,辐射量就会保持在最小值。...电路中的振铃可能会使高频分量的幅度增大,并使其辐射的强度增大 10 倍。这就是为了减小电磁干扰,通常要从解决信号完整性问题入手的一个原因。2、时钟频率与带宽带宽与信号的上升沿直接有关。...一个上升边为1pS的信号在经过互连传输后,其上升边可能为0.35/8GHz = 0.043nS,即43pS,这说明连使上升边退化了。

    47910

    【数学建模】——matplotlib简单应用

    1.绘制带有中文标签和图例的正弦和余弦曲线 使用numpy创建自变量数组t。 计算正弦函数值s和余弦函数值z。 使用pylab绘制正弦和余弦曲线,并设置标签。...计算正弦函数值y和余弦函数值z。 使用plot函数绘制曲线,标签中包含LaTeX公式。 设置x轴和y轴标签。 设置图像标题。 设置y轴范围。 显示图例。...计算正弦、余弦和其他函数值。 创建图形,使用subplot函数创建多个子图。 在每个子图中绘制曲线,设置颜色和样式。 限制y轴范围。...计算角度数组,均匀分布在圆周上。 使用polar函数绘制雷达图,设置角度和数据,设置颜色、线型和端点符号。 设置角度网格标签,使用中文字体。 填充雷达图内部。...计算极坐标下的x和y值。 使用mpl_toolkits.mplot3d中的plot函数绘制三维曲线。 设置图例。

    10210

    音乐游戏&音频解析 ABC(上)

    ,传统类型的音乐游戏有很多:譬如太鼓达人、吉他英雄之类,近些年亦出现了不少颇有些异质的音乐游戏,譬如:节奏天国、啪嗒砰等等,后者虽然融入了不少创新元素,使音乐游戏有了不少新鲜味道,但就本质而言,他们仍然未有脱离开音乐中的一个重要元素...这个问题可能太过宽泛了些,很多人都发表了不少具有启发意义的观点,甚至是书籍(譬如这本),这里我们自然也不期望仅仅通过几行文字就能将其说清道明,但如果就在“音乐游戏”这个大前提下来说的话,我私认为所谓“优秀的关卡...……实际上,我认为在以前传统音乐游戏的制作方法之上,确实也不可能避免或者解决这个问题,我们自然可以提供尽可能的歌曲给玩家,但是无论我们提供多少歌曲,充其量仅是减轻了上述问题,并不能算作解决了上述问题,目前很多音乐游戏的流行的做法就是提供不断更新的乐库...有些相关了解的朋友一定听过数模转换(模数转换)这个名词,意思便是数字信号与模拟信号的相互转换,而PCM便是这众多转换方法中的一种,其大致主要分为两个方面,即编码与调制,编码,即是模拟信号转换为数字信号的过程...在此我们暂且不顾调制的具体流程,因为我们暂时还用其不上,而先将主要精力置于编码这个过程:   现实中的声音是模拟信号,而声音也可以理解为声波,可以认为是由多种波形叠加而成的一种波,于此我们简单考虑,就将声波看做一个正弦波

    83720

    ChatGPT标注数据比人类便宜20倍,80%任务上占优势 | 苏黎世大学

    Pine 发自 凹非寺 量子位 | 公众号 QbitAI 又一“人类饭碗”被AI抢走,还是和训练AI息息相关的: 数据标注。...苏黎世大学研究发现,在ChatGPT面前,无论成本还是效率,人类可以说是毫无优势: 成本上,ChatGPT平均每个标注成本低于0.003美元,比众包平台便宜20倍; 效率上,在相关性、立场、主题等任务中...论文发出后,有网友调侃,“生成训练数据需要人工”的说法已经成为过去式了。 还有人直呼“古籍修复数字化工作是不是有希望提速了”。...评估的标准有两条: 准确性:ChatGPT和MTurk众包工作者相较于正确标注的百分比; 编码者间的一致性信度:用ChatGPT、MTurk众包工作者以及专业数据标注者任意二者之间的一致性来计算; 结果呢也显而易见...除此之外,OpenAI的CEO奥特曼也不止在一个场合下说过“AI会取代现有的部分工作”。

    36720

    工业机器视觉系统相机如何选型?(理论篇—3)

    (image resolution),如果是彩色数字图像,则在计算机中需要记录每个像素对应的RGB分量,如下图所示: ?...因此,通过研究镜头对亮度按正弦变化图形的反应,就可以研究镜头的性能和分辨率。正弦光栅就是亮度按照正弦变化的图像,如下图所示: ? ​ 其中棚格黑白相间,可把黑色看作正弦波谷,把白色看作正弦波峰。...如果用研究镜头的空间分辨率类似的方法来研究相机空间分辨率,则正弦光栅中的每对线需要至少2个像素来表示。由此,可以通过像素的物理大小来计算相机的空间分辨率。...在检测目标的高度在一定范围内可能变化的情况下,选择合适的景深,对于机器视觉系统的稳定性尤为重要。...在CMOS传感器中,每个光敏元的电荷都会立即被与之邻接的一个放大器放大,再以类似内存寻址的方式输出,如下图所示: ?

    1.8K20

    傅里叶变换:世界是静止的吗?

    cos(0t)就是一个周期无限长的正弦波,也就是一条直线!所以在频域,0频率也被称为直流分量,在傅里叶级数的叠加中,它仅仅影响全部波形相对于数轴整体向上或是向下而不改变波的形状。   ...我们看似不规律的事情反而是规律的正弦波在时域上的投影,而正弦波又是一个旋转的圆在直线上的投影。那么你的脑海中会产生一个什么画面呢?   ...但是在频域呢?则简单的很,无非就是几条竖线而已。   所以很多在时域看似不可能做到的数学操作,在频域相反很容易。这就是需要傅里叶变换的地方。...(这段有点难度,看不懂的可以直接跳过这段)微分方程的重要性不用我过多介绍了。各行各业都用的到。但是求解微分方程却是一件相当麻烦的事情。因为除了要计算加减乘除,还要计算微分积分。...基础的正弦波A.sin(wt+θ)中,振幅,频率,相位缺一不可,不同相位决定了波的位置,所以对于频域分析,仅仅有频谱(振幅谱)是不够的,我们还需要一个相位谱。那么这个相位谱在哪呢?

    64610

    声音的表示(1):作为音视频开发,你真的了解声音吗?丨音视频基础

    如果你细思起来,感觉还有疑问,不妨继续读下去,和我们一起略略探讨一下:日常开发工作中处理的音频数据,是如何从一种物理现象转变而来。这个探讨也许无用,但可能会有趣。...探讨这个问题,至少包含了两个大的认知过程:1)用科学研究的方法对一个日常现象进行物理定义、特征探索、规律发现、数学描述的过程;2)用信息处理手段对物理现象进行数字化的过程。...以上便是声音的定义,它将声音界定为一种波动现象,这样就可以针对性的在『波』这个物理概念的范畴里去研究它。当然,如果我们在研究中有新的发现,能颠覆原有的认知,从而重新定义它,也不是没有可能。...声音的特征是我们在感知声音并不断对其现象进行研究的过程中逐步识别和提取出来的。比如,我们很容易就能感知到声音有大有小;有尖锐有浑厚;不同的人说话,即使声音大小差不多,我们也能识别他们。...频谱图则可以帮助我们定位音乐细节在各频段上的分布问题,在混音中可以用来辅助调节滤波器和均衡器。

    58720

    傅里叶变换有什么用?

    例如方波函数就可由多个正余弦波函数来进行叠加得到,也许你听起来觉得不太可能,但事实就是如此,根据上篇文章,多个正弦波函数,如果我们调整适当的半径速度与旋转方向,我们就可以拟合出方波函数: ? ? ?...二,傅里叶变换在图像处理中的应用 傅里叶变换在图像处理中有重大应用,例如图像的傅里叶降噪、JPEG图像压缩技术、模式识别等等。...研究表明,在频域图像里面,高频往往对应着图像的亮度或者灰度变化剧烈的地方,例如边缘信息、噪声等信息;而低频部分往往对应着图像中亮度变化不大的地方。...2,文字识别: 在文字识别领域中,我们往往要矫正文档的方向,例如有时候我们采集的图像中的文字是倾斜的,这个时候我们就可以通过傅里叶变换来实现,我们先来看下面几行文字,也就是本文的开头一段: ?...3,模式识别: 在计算机模式识别领域中,我们往往要通过样本的特征将样本划分到一定的类别中,例如让计算机给手写字母分类,尽管我们肉眼能够很容易就判断出文字的分类,但对计算机来说绝非这么简单,但是如果转换到频域之后

    4.6K20

    开源助听器

    这个文章我相信很多人感兴趣,我第一次创业项目就是一个骨传导耳机,可是我陷于这种技术的的局限中,觉得自己选的技术我能力不足做不出来,后面就慢慢淡化了,现在机遇巧合又接触了。...硬件上运行优化的Linux操作系统Mahalia 。整个系统可由用户通过颈带佩戴,并允许基于 openMHA 进行助听器现场研究。...还有什么世界相机 https://wiki.pine64.org/wiki/PineBuds_Pro https://github.com/pine64/OpenPineBuds 这是最接近成品的一个东西...由于声音是通过颅骨传播的,所以声音的能量和音色会发生很大的衰减和变化,导致听感不够真实和自然。 在耳机工作时,耳机的外壳会被里面的发声振子带着一起振动,外壳再振动周围的空气,就会产生漏音。...另外,由于骨传导耳机不会完全隔绝外界噪声,所以用户可能会为了听清楚而调高音量,这样就会加重对内耳的负担。 这是一个庞大无比的市场,至少我就是一个使用者,耳朵老是听不清一些细小的声音,就是我很难辨识。

    15610
    领券