三步加星标 你好,我是 zhenguo 在今天这篇文章,我将总结 3 个Python 数据分析常见问题,分别是: nan相等性比较问题 pandas 按列 extract 和正则提取 round 四舍五入之谜...为了演示的方便,我使用 tex 排版,文末提供使用数据和pdf下载。...提出nan相等性比较问题; 使用 extract 正则提取,可以实现更复杂的正则表达式提取,很有用; round 四舍五入问题: ?
一、前言 前几天在Python最强王者交流群【群除我佬】问了一个Pandas处理的问题,提问截图如下: 预期结果如下所示: 二、实现过程 这个需求看上去还挺难理解的,需要多读几遍才行。...后来【隔壁山楂】建议先加逗号,合并后再strip掉两端的逗号,这个方法最简单,也快。后来还提供了一个代码,真的太强了!...这篇文章主要盘点了一个Pandas处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。
使用to_numeric转为数值。...to parse string 可以将无效值强制转换为NaN,如下所示: ?...DataFrame 如果想要将这个操作应用到多个列,依次处理每一列是非常繁琐的,所以可以使用DataFrame.apply处理每一列。...例如,用两列对象类型创建一个DataFrame,其中一个保存整数,另一个保存整数的字符串: >>> df = pd.DataFrame({'a': [7, 1, 5], 'b': ['3','2','1...astype强制转换 如果试图强制将两列转换为整数类型,可以使用df.astype(int)。 示例如下: ? ?
在有关基于 Python 的绘图库的系列文章中,我们将对使用 Pandas 这个非常流行的 Python 数据操作库进行绘图进行概念性的研究。...这非常方便,你已将数据存储在 Pandas DataFrame 中,那么为什么不使用相同的库进行绘制呢? 在本系列中,我们将在每个库中制作相同的多条形柱状图,以便我们可以比较它们的工作方式。...(用于 Linux、Mac 和 Windows 的说明) 确认你运行的是与这些库兼容的 Python 版本 数据可在线获得,并可使用 Pandas 导入: import pandas as pd df...在本系列文章中,我们已经看到了一些令人印象深刻的简单 API,但是 Pandas 一定能夺冠。...我以宽格式使用数据,这意味着每个党派都有一列: year conservative labour liberal others 0 1966 253 364
在 Pandas 中有很多种方法可以进行DF的合并。本文将研究这些不同的方法,以及如何将它们执行速度的对比。 合并DF Pandas 使用 .merge() 方法来执行合并。...我们可以使用参数‘on’参数指定根据哪列进行合并。...中concat() 方法在可以在垂直方向(axis=0)和水平方向(axis=1)上连接 DataFrame。...中的Merge Joins操作都可以针对指定的列进行合并操作(SQL中的join)那么他们的执行效率是否相同呢?...两个 DataFrame 都有相同数量的行和两列,实验中考虑了从 100 万行到 1000 万行的不同大小的 DataFrame,并在每次实验中将行数增加了 100 万。
来源:Deephub Imba本文约1400字,建议阅读15分钟在 Pandas 中有很多种方法可以进行DF的合并。本文将研究这些不同的方法,以及如何将它们执行速度的对比。...合并DF Pandas 使用 .merge() 方法来执行合并。...我们可以使用参数‘on’参数指定根据哪列进行合并。...中concat() 方法在可以在垂直方向(axis=0)和水平方向(axis=1)上连接 DataFrame。...中的Merge Joins操作都可以针对指定的列进行合并操作(SQL中的join)那么他们的执行效率是否相同呢?
9、10、11行三种方式均可以导入文本格式的数据。 特殊说明:第9行使用的条件是运行文件.py需要与目标文件CSV在一个文件夹中的时候可以只写文件名。...方法二:使用pd.read.table(),需要指定是什么样分隔符的文本文件。用sep=””来指定。 2、当文件没有标题行时 可以让pandas为其自动分配默认的列名。 也可以自己定义列名。...5、文本中缺失值处理,缺失数据要么是没有(空字符串),要么是用某个标记值表示的,默认情况下,pandas会用一组经常出现的标记值进行识别,如NA、NULL等。查找出结果以NAN显示。...2、索引上的合并 (1)普通索引的合并 Left_index表示将左侧的行索引引用做其连接键 right_index表示将右侧的行索引引用做其连接键 上面两个用于DataFrame中的连接键位于其索引中...(2)对于pandas对象(如Series和DataFrame),可以pandas中的concat函数进行合并。
筛选出特定的行 用pandas来绘图 在DataFrame中新增行与列 DataFrame中的统计分析与计算 DataFrame中排序问题 合并多个表格 时序问题的处理 字符串类型数据的处理 DataFrame...“行”,例如df["Age"] > 40,而[]中的第二部分代表的是“列”,例如Name,你可以选择只要一列,也可以选择需要多列,用括号括起来即可 df.loc[df["Age"] > 40,["Name...Pandas内部方法来绘制图形,就先介绍到这里,大家要是有兴趣,小编可以之后单独写一篇详细说说 如何新增一列 在DataFrame当中新增一列其实不难,我们可以这么来操作 df["Date"] = pd.date_range...NaN S 中年 [5 rows x 13 columns] 如果我们想给表格中的列名重新命名的话,可以使用rename方法, df_renamed = df.rename...在Pandas中也提供了很多相关的方法来进行数据的统计分析 print(df["Age"].mean()) print(df["Age"].max()) print(df["Age"].min())
在Web上利用水晶报表显示一段文本,用的是动态加载rpt的方法,结果出来的文本效果如下: 右边很不齐,于是回到水晶报表10程序中调rpt,很快,把文本的对齐方式设为两端对齐就好了...接着,试着直接导入rpt,结果发现居然不能设置两端对齐,——根本就没有两端对齐,在vs .net环境里面,即使强制把两端对齐按钮添上工具栏,也是灰的。 ...很难得到字段的引用,最后终于搞定,我对cr的对象结构也有了一点点的进一步了解: 水晶报表在.Net中,主要的命名空间,一个是CrystalDecisions.CrystalReports.Engine...最后,还是在命名空间CrystalDecisions.CrystalReports.Engine中乱看,看到FieldObject,顺藤摸瓜,才算找到,原来是这样的:报表由很多的ReportObject...才觉悟过来:问题并不出在报表上,而是在于网页的显示方式的限制,在两端对齐的方式下,查看显示的网页,可以看到: 原来它也只是利用CSS来进行两端对齐的。
继续更新pandas数据清洗,历史文章: pandas 文本处理大全(附代码) pandas 缺失数据处理大全(附代码) pandas 重复数据处理大全(附代码) 感兴趣可以关注这个话题pandas数据清洗...如果将两个object列合并在一起的,没什么意思,因为大家都知道会发生什么,object+ object= object而已。 把object列合并到category列上 接着上面的例子。...在合并中,为了保存分类类型,两个category类型必须是完全相同的。 这个与pandas中的其他数据类型略有不同,例如所有float64列都具有相同的数据类型,就没有什么区分。...总结一下,pandas的category类型非常有用,可以带来一些良好的性能优势。但是它也很娇气,使用过程中要尤为小心,确保category类型在整个流程中保持不变,避免变回object。...category列的合并:合并时注意,要保留category类型,且每个dataframe的合并列中的分类类型必须完全匹配。
,那么pandas会自动搜索两个DataFrame中的相同列,如果有,则按该列进行合并,如果没有,则会报下面的错: pandas.tools.merge.MergeError: No common columns...to perform merge on 好了,了解了merge的基本使用,我们接下来主要来探究两个问题: 2.1 关于连接属性 在上面的合并过程中,我们并没有指定合并的列,它会自动搜索两个DataFrame...df4的key2列进行合并,结果中两列的值都是相同的。...2.2 关于连接方式 细心的读者可能已经发现了,在我们合并df1和df2的时候,我们没有指定按照何种方式连接,结果中没有key值为‘c’或者‘d’的数据,这是因为pandas的merge()方法默认使用的是内连接...例如,只有df1中有key值为‘c’的数据,则合并结果中data2列使用NaN来补足数据。
一、前言 前几天在Python星耀交流群有个叫【iLost】的粉丝问了一个关于使用pandas解决两列数据对比的问题,这里拿出来给大家分享下,一起学习。...大概意思是说在DF中有2列数据,想每行取两列数据中的最大值,形成一个新列,该怎么写?最开始【iLost】自己使用了循环的方法写出了代码,当然是可行的,但是写的就比较难受了。...方法一:【月神】解答 其实这个题目的逻辑和思路也相对简单,但是对于Pandas不熟悉的小伙伴,接受起来就有点难了。...使用numpy结合pandas,代码如下: df['max4'] = np.where(df['cell1'] > df['cell2'],df['cell1'], df['cell2']) df...这篇文章基于粉丝提问,针对df中,想在每行取两列数据中的最大值,作为新的一列问题,给出了具体说明和演示,一共5个方法,顺利地帮助粉丝解决了问题,也帮助大家玩转Pandas,学习Python相关知识。
有很多功能,同时在【转换】和【添加】两个菜单中都存在,而且,通常来说,它们得到的结果列是一样的,只是在【转换】菜单中的功能会将原有列直接“转换”为新的列,原有列消失;而在【添加】菜单中的功能,则是在保留原有列的基础上...但是,最近竟然发现,“合并列”的功能,虽然在大多数情况下,两种操作得到的结果一致,但是他们却是有本质差别的,而且一旦存在空值(null)的情况,得到的结果将有很大差别。...原来,添加列里使用的内容合并函数是:Text.Combine,而转换里使用的内容合并函数是:Combiner.CombineTextByDelimiter。...同时,通过上面得到结果的不同,我们也知道了,用Text.Combine函数对内容进行合并,会完全忽略null值,而通过Combiner.CombineTextByDelimiter进行文本合并,则会保留...显然,我们只要将其所使用的函数改一下就OK了,比如转换操作生成的步骤公式修改如下: 同样的,如果希望添加列里,内容合并时保留null值,则可以进行如下修改: 这个例子,再次说明,绝大多数的时候,我们只需要对操作生成的步骤公式进行简单的调整
---- 文本的主要两个类型是string和object。如果不特殊指定类型为string,文本类型一般为object。...gmail 3 xiaoli 163 4 NaN NaN 5 amei qq 6、文本查询 通过find和findall两个方法实现。...find 参数很简单,直接输入要查询的字符串即可,返回在原字符串中的位置,没查询到结果返回-1。...NaN 5 amei@qq.com 4.0 上面示例返回@在email变量中的位置。...8、文本的虚拟变量 get_dummies可以将一个列变量自动生成虚拟变量(哑变量),这种方法在特征衍生中经常使用。
多列操作与函数应用Pandas提供了强大的方法来对多列进行操作,并能够轻松地应用自定义函数。...Pandas提供了便捷的方法来实现这一点:数据合并# 创建两个示例数据集df1 = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],...Pandas提供了一些高级技巧来处理缺失值:插值填充# 创建示例数据集data = {'A': [1, 2, np.nan, 4], 'B': [5, np.nan, 7, 8]}df =...# 创建示例数据集data = {'A': [1, 2, np.nan, 4], 'B': [5, np.nan, 7, 8]}df = pd.DataFrame(data)# 使用KNN...总结总的来说,本文介绍了Pandas库的一系列高级用法,涵盖了数据清洗与预处理、多列操作与函数应用、数据合并与拼接、数据分组与聚合、数据透视表与交叉表、缺失值处理的高级技巧、文本数据处理、数据可视化、并行处理
DataFrame合并pandas知识体系图 Pandas是一个开源的Python数据分析库。...下面我们将通过Python中的pandas包完成常见的数据分析任务: 相关系数和协方差 import pandas.io.data as web from pandas import DataFrame...frame.sum(level='color',axis=1) '''使用DataFrame的列''' frame1 = DataFrame({'a':range(7), ...as pd from pandas import DataFrame,Series 读取文件 #读取文本格式的数据 pd.read_csv('',nrows=1) #读取带分隔符的数据,如txt等...,DataFrame对象中的索引会被丢弃掉 pd.merge(left,right,on='key1') #suffixes附加到左右两个DataFrame对象的重叠列名上的字符串 pd.merge(left
而第二个块中的 In [1]: 表示输入在一个笔记本中。...您可以在食谱中查看更复杂的示例。...通常,我们按照以下方式导入: In [1]: import numpy as np In [2]: import pandas as pd pandas 中的基本数据结构 Pandas 提供了两种处理数据的类...Pandas 中的基本数据结构 Pandas 提供了两种处理数据的类: Series:一个持有任何类型数据的一维标记数组 例如整数、字符串、Python 对象等。...可以在DataFrame中包含分类数据。
对两个 DataFrame 进行联合操作,实现合并的功能。...combine_first()方法根据 DataFrame 的行索引和列索引,对比两个 DataFrame 中相同位置的数据,优先取非空的数据进行合并。...我们可以根据名称中的子字符串过滤 pandas DataFrame 的列,具体是使用 pandas 的DataFrame.filter功能。...DataFrame 在我们处理数据的时候,有时需要根据某个列进行计算得到一个新列,以便后续使用,相当于是根据已知列得到新的列,这个时候assign函数非常方便。...在以下示例中,创建了一个新的排名列,该列按学生的分数对学生进行排名: import pandas as pd df = pd.DataFrame({'Students': ['John', 'Smith
例如,重量属性在一个系统中采用公制,而在另一个系统中却采用英制;价格属性在不同地点采用不同的货币单位。这些语义的差异为数据集成带来许多问题。...常用的合并数据的函数包括: 2.1 主键合并数据merge 主键合并数据类似于关系型数据库的连接操作,主要通过指定一个或多个键将两组数据进行连接,通常以两组数据中重复的列索引为合并键。...观察上图可知,result是一个4行5列的表格数据,且保留了key列并集部分的数据,由于A、B两列只有3行数据,C、D两列有4行数据,合并后A、B两列没有数据的位置填充为NaN。...没有A、B两个列索引,所以这两列中相应的位置上填充了NaN。...重叠合并数据是一种并不常见的操作,它主要将一组数据的空值填充为另一组数据中对应位置的值。pandas中可使用combine_first()方法实现重叠合并数据的操作。
NaN的矩阵5.2 删除掉有NaN的行或列5.3 替换NaN值为0或者其他5.4 是否有缺失数据NaN6.Pandas导入导出6.1 导入数据6.2 导出数据7.Pandas合并操作7.1 Pandas...合并concat7.2.Pandas 合并 merge7.2.1 定义资料集并打印出7.2.2 依据key column合并,并打印7.2.3 两列合并7.2.4 Indicator设置合并列名称7.2.5...合并操作 7.1 Pandas合并concat import pandas as pd import numpy as np # 定义资料集 df1 = pd.DataFrame(np.ones((3,4...此方法是依照column来做纵向合并,有相同的column上下合并在一起, 其他独自的column各自成列,原来没有值的位置皆为NaN填充。...key1 key2 0 C0 D0 K0 K0 1 C1 D1 K1 K0 2 C2 D2 K1 K0 3 C3 D3 K2 K0 ''' 7.2.3 两列合并
领取专属 10元无门槛券
手把手带您无忧上云