背景介绍 DataFrames和Series是用于数据存储的pandas中的两个主要对象类型:DataFrame就像一个表,表的每一列都称为Series。您通常会选择一个系列来分析或操纵它。...今天我们将学习如何重命名Pandas DataFrame中的列名。 ? 入门示例 ? ? ? ?...上述代码: # ## 如何重命名pandas dataframe中的列名字 # In[32]: import pandas as pd # In[33]: data = pd.read_csv('ufo.csv...reported',\ 'state', 'time'] # In[40]: data.columns = data_cols # In[41]: data.head() # ## 读取数据时指定列名...pd.read_csv('ufo.csv',names= data_cols,header=0) data.head() # In[43]: data.columns # ## 使用replace()修改列名
参考链接: 遍历Pandas DataFrame中的行和列 有如下 Pandas DataFrame: import pandas as pd inp = [{'c1':10, 'c2':100}, {...对于每一行,都希望能够通过列名访问对应的元素(单元格中的值)。...最佳解决方案 要以 Pandas 的方式迭代遍历DataFrame的行,可以使用: DataFrame.iterrows()for index, row in df.iterrows(): print...改用DataFrame.apply():new_df = df.apply(lambda x: x * 2) itertuples:列名称将被重命名为位置名称,如果它们是无效的Python标识符,重复或以下划线开头..., c2=120)] 或与pd.DataFrame.itertuples: list(df.itertuples(index=False)) [Pandas(c1=10, c2=100), Pandas
摘选自董付国老师整理的300页pandas教学PPT,待时机成熟后再分享完整版。
对列名进行排序 # 读取movie数据集 In[12]: movie = pd.read_csv('data/movie.csv') In[13]: movie.head() Out[13]: ?...在整个DataFrame上操作 In[18]: pd.options.display.max_rows = 8 movie = pd.read_csv('data/movie.csv...在DataFrame上使用运算符 # college数据集的值既有数值也有对象,整数5不能与字符串相加 In[37]: college = pd.read_csv('data/college.csv'...# 用DataFrame和DataFrame进行比较 In[55]: college_self_compare = college_ugds_ == college_ugds_ college_self_compare.head...# 查看US News前五所最具多样性的大学在diversity_metric中的情况 In[81]: us_news_top = ['Rutgers University-Newark',
: import pandas as pd data = {'name': ['aaaaaa', 'bbbbbb', 'cccccc'], 'pay': [4000, 5000, 6000]} #...以name和pay为列索引,创建DataFrame frame = pd.DataFrame(data) #自定义行索引 print(frame) 运行结果如下所示: name pay...admin 2 3 admin 3 另一种删除方法 name a 1 admin 1 3 admin 3 (1)添加列 添加列可直接赋值,例如给 aDF 中添加...中可利用 drop()方法删除指定轴上的数据,drop()方法返回一个新的对象,不会直接修改原始数据。...对象的修改和删除还有很多方法,在此不一一列举,有兴趣的同学可以自己去找一下 统计功能 DataFrame对象成员找最低工资和高工资人群信息 DataFrame有非常强大的统计功能,它有大量的函数可以使用
本文介绍 Pandas DataFrame 中应用 IF 条件的5种不同方法。...= 'Emma'), 'name_match'] = 'Mismatch' print (df) 查询结果如下: 在原始DataFrame列上应用 IF 条件 上面的案例中,我们学习了如何在新增列中应用...IF 条件,有时你可能会遇到将结果存储到原始DataFrame列中的需求。...`set_of_numbers`: [1,2,3,4,5,6,7,8,9,10,0,0] 计划应用以下 IF 条件,然后将结果存储在现有的set_of_numbers列中: 如果数字等于0,将该列数字调整为...在另一个实例中,假设有一个包含 NaN 值的 DataFrame。
Python之Pandas中Series、DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签...1.2 Series的字符串表现形式为:索引在左边,值在右边。...dataframe中的数据是以一个或者多个二位块存放的(而不是列表、字典或者别的一维数据结构)。 3.索引对象 pandas的索引对象负责管理轴标签和其他元素(比如轴名称等)。...操作Series和DataFrame中的数据的基本手段 5.1 重新索引 reindex 5.2 丢弃指定轴上的项 drop 5.3 索引、选取和过滤(.ix) 5.4 算数运算和数据对齐 DataFrame...处理缺失数据(Missing data) 9.1 pandas使用浮点值NaN(Not a Number)表示浮点和非浮点数组中的缺失数据。
>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0], [3, 4, np.nan, 1],...C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 3.0 4.0 NaN 5 3 3.0 3.0 NaN 4 3、将“A”、“B”、“C”和“D”列中的所有...limit=1) A B C D 0 0.0 2.0 2.0 0 1 3.0 4.0 NaN 1 2 NaN 1.0 NaN 5 3 NaN 3.0 NaN 4 5、使用 DataFrame...填充时,替换沿相同的列名和相同的索引发生 >>> df2 = pd.DataFrame(np.zeros((4, 4)), columns=list("ABCE")) >>> df.fillna(df2
今天是pandas数据处理专题的第六篇文章,我们来聊聊DataFrame的排序与汇总运算。...在上一篇文章当中我们主要介绍了DataFrame当中的apply方法,如何在一个DataFrame对每一行或者是每一列进行广播运算,使得我们可以在很短的时间内处理整份数据。...排序 排序是我们一个非常基本的需求,在pandas当中将这个需求进一步细分,细分成了根据索引排序以及根据值排序。我们先来看看Series当中的排序方法。...Series当中的排序方法有两个,一个是sort_index,顾名思义根据Series中的索引对这些值进行排序。另一个是sort_values,根据Series中的值来排序。...排名 有的时候我们希望得到元素的排名,我们会希望知道当前元素在整体当中排第几,pandas当中也提供了这个功能,它就是rank方法。 ?
今天说一说pandas | DataFrame中的排序与汇总方法,希望能够帮助大家进步!!! 今天是pandas数据处理专题的第六篇文章,我们来聊聊DataFrame的排序与汇总运算。...在上一篇文章当中我们主要介绍了DataFrame当中的apply方法,如何在一个DataFrame对每一行或者是每一列进行广播运算,使得我们可以在很短的时间内处理整份数据。...排序 排序是我们一个非常基本的需求,在pandas当中将这个需求进一步细分,细分成了根据索引排序以及根据值排序。我们先来看看Series当中的排序方法。...但是由于DataFrame是一个二维的数据,所以在使用上会有些不同。...排名 有的时候我们希望得到元素的排名,我们会希望知道当前元素在整体当中排第几,pandas当中也提供了这个功能,它就是rank方法。
DataFrame上最常见的操作之一是重命名(rename)列名称。 分析人员重命名列名称的动机之一是确保这些列名称是有效的Python属性名称。...扩展 在此处,更改了列名称。还可以使用.rename方法重命名索引,如果列是字符串值,则更有意义。 因此,我们可以将索引设置为movie_title(电影片名)列,然后将这些值映射为新值。...当列表具有与行和列标签相同数量的元素时,此赋值有 以下代码就显示了这样一个示例 从CSV文件中读取数据,并使用index_col参数告诉Pandas将movie_title列用作索引。...在每个Index对象上使用.to_list方法来创建Python标签列表。 在每个列表中修改3个值,将这3个值重新赋值给.index和.column属性。...Pandas代码中,还可以看到用于清除列名的列表推导式。
python中pandas模块查看DataFrame 1、首先加载pandas模块 import pandas 2、然后创建一个DataFrame df = pd.DataFrame(data=None..., index=None, columns=None, dtype=None, copy=False) 3、初始化一个DataFrame。...该DataFrame将作为样例,用于下面的讲解: data = { '性别':['male','male','female','male'], '姓名':['汤师爷',...'], columns=['姓名','性别','年龄','职业']) 4、在命令行输入df ,即可看到当前DataFrame的内容。...以上就是python中pandas模块查看DataFrame的方法,希望对大家有所帮助。
在 SQL 中经常会使用JOIN操作来组合两个或多个表。有很多种不同种类的 JOINS操作,并且pandas 也提供了这些方式的实现来轻松组合 Series 或 DataFrame。...SQL语句提供了很多种JOINS 的类型: 内连接 外连接 全连接 自连接 交叉连接 在本文将重点介绍自连接和交叉连接以及如何在 Pandas DataFrame 中进行操作。...自连接 顾名思义,自连接是将 DataFrame 连接到自己的连接。也就是说连接的左边和右边都是同一个DataFrame 。自连接通常用于查询分层数据集或比较同一 DataFrame 中的行。...注:如果我们想排除Regina Philangi ,可以使用内连接"how = 'inner'" 我们也可以使用 pandas.merge () 函数在 Pandas 中执行自连接,如下所示。...总结 在本文中,介绍了如何在Pandas中使用连接的操作,以及它们是如何在 Pandas DataFrame 中执行的。这是一篇非常简单的入门文章,希望在你处理数据的时候有所帮助。
前言:解决在Pandas DataFrame中插入一列的问题 Pandas是Python中重要的数据处理和分析库,它提供了强大的数据结构和函数,尤其是DataFrame,使数据处理变得更加高效和便捷。...然而,对于新手来说,在DataFrame中插入一列可能是一个令人困惑的问题。在本文中,我们将分享如何解决这个问题的方法,并帮助读者更好地利用Pandas进行数据处理。...为什么要解决在Pandas DataFrame中插入一列的问题? Pandas DataFrame是一种二维表格数据结构,由行和列组成,类似于Excel中的表格。...解决在DataFrame中插入一列的问题是学习和使用Pandas的必要步骤,也是提高数据处理和分析能力的关键所在。 在 Pandas DataFrame 中插入一个新列。...总结: 在Pandas DataFrame中插入一列是数据处理和分析的重要操作之一。通过本文的介绍,我们学会了使用Pandas库在DataFrame中插入新的列。
在数据处理和分析中,JSON是一种常见的数据格式,而Pandas DataFrame是Python中广泛使用的数据结构。...将JSON数据转换为Pandas DataFrame可以方便地进行数据分析和处理。在本文中,我们将探讨如何将JSON转换为Pandas DataFrame,并介绍相关的步骤和案例。...图片使用 Pandas 读取 JSON 文件在开始之前,让我们了解如何使用Pandas的read_json()函数从JSON文件中读取数据。...使用 Pandas 从 JSON 字符串创建 DataFrame除了从JSON文件中读取数据,我们还可以使用Pandas的DataFrame()函数从JSON字符串创建DataFrame。...结论在本文中,我们讨论了如何将JSON转换为Pandas DataFrame。
则可以使用column名和index名进行定位,如: df.loc[‘image1’:‘image10’, ‘age’:‘score’] 实例: import numpy as np import pandas...as pd from pandas import Series, DataFrame np.random.seed(666) df = pd.DataFrame(np.random.rand(25)....0.727858 B 0.012703 0.099929 D 0.200248 0.700845 E 0.774479 0.110954 F 0.023236 0.197503 ''' # 赋值于一个新的 dataframe...sub_df.loc['A':'B', 'c1':'c3']) # 基于 label 选择 ''' c1 c3 A 0.700437 0.676514 B 0.012703 0.048813 ''' 需要注意的是: 在iloc
今天是pandas数据处理专题的第5篇文章,我们来聊聊pandas的一些高级运算。...今天这篇文章我们来聊聊dataframe中的广播机制,以及apply函数的使用方法。 dataframe广播 广播机制我们其实并不陌生, 我们在之前介绍numpy的专题文章当中曾经介绍过广播。...同样的操作在dataframe也一样可以进行。 ?...比如我们可以这样对DataFrame当中的某一行以及某一列应用平方这个方法。 ? 另外,apply中函数的作用域并不只局限在元素,我们也可以写出作用在一行或者是一列上的函数。...总结 今天的文章我们主要介绍了pandas当中apply与applymap的使用方法, 这两个方法在我们日常操作DataFrame的数据非常常用,可以说是手术刀级的api。
DataFrame简介: DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。...DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典(共用同一个索引)。...跟其他类似的数据结构相比(如R的data.frame),DataFrame中面向行和面向列的操作基本上是平衡的。...其实,DataFrame中的数据是以一个或多个二维块存放的(而不是列表、字典或别的一维数据结构)。...导入基本python库: import numpy as np import pandas as pd DataFrame构造: 1:直接传入一个由等长列表或NumPy数组组成的字典; dict
跟其他类似的数据结构相比(如R的data.frame),DataFrame中面向行和面向列的操作基本上是平衡的。...其实,DataFrame中的数据是以一个或多个二维块存放的(而不是列表、字典或别的一维数据结构)。...导入基本python库: import numpy as np import pandas as pd DataFrame构造: 1:直接传入一个由等长列表或NumPy数组组成的字典; dict...第一种:两个不同列表转换成为数据框 from pandas.core.frame import DataFrame a=[1,2,3,4]#列表a b=[5,6,7,8]#列表b c={"a" : a,...参考资料:《利用Python进行数据分析》 在一个空的dataframe中插入数据 def test(): LIST=[1,2,3,4] empty = pd.DataFrame(columns
今天是pandas数据处理专题第三篇文章,我们来聊聊DataFrame中的索引。 上篇文章当中我们简单介绍了一下DataFrame这个数据结构的一些常见的用法,从整体上大概了解了一下这个数据结构。...我们在使用当中往往会觉得不方便,因为我们往往是知道我们需要的行号和列名。也就是知道一个索引知道一个位置,而不是两个位置或者是两个索引,所以使用loc也不方便使用iloc也不方便。...这里我们在iloc之后又加了一个方括号,这其实不是固定的用法,而是两个语句。先是iloc查询行之后,再对这些行组成的新的DataFrame进行列索引。...总结 今天主要介绍了loc、iloc和逻辑索引在pandas当中的用法,这也是pandas数据查询最常用的方法,也是我们使用过程当中必然会用到的内容。建议大家都能深刻理解,把它记牢。...但是可惜的是,在pandas最新的版本当中这个方法已经被废弃了。我个人也没有什么太好的办法,只能熟能生巧了,多用几次就记住了。
领取专属 10元无门槛券
手把手带您无忧上云