首页
学习
活动
专区
圈层
工具
发布

数据可视化(6)-Seaborn系列 | 直方图distplot()

直方图 seaborn.distplot() 直方图,质量估计图,核密度估计图 该API可以绘制分别直方图和核密度估计图,也可以绘制直方图和核密度估计图的合成图 通过设置默认情况下,是绘制合成图,设置情况图下...以下是可选参数: bins: matplotlib hist()的参数 或者 None 作用:指定直方图规格,若为None,则使用Freedman-Diaconis规则, 该规则对数据中的离群值不太敏感...hist:bool 是否绘制(标准化)直方图 kde:bool 是否绘制高斯核密度估计图 rug:bool 是否在支撑轴上绘制rugplot()图 {hist,kde,rug,fit} _kws:...字典 底层绘图函数的关键字参数 color:matplotlib color 该颜色可以绘制除了拟合曲线之外的所有内容 vertical:bool 如果为True,则观察值在y轴上,即水平横向的显示...numpy as np sns.set() #构建数据 np.random.seed(0) x = np.random.randn(100) # 使用pandas来设置x 轴标签 和y 轴标签 x =

15.5K01
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据可视化(15)-Seaborn系列 | 双变量关系图jointplot()

    双变量关系图 在默认情况下双变量关系图是散点图与直方图组合的联合直方图,可以通过设置kind来改变联合直方图。..."hex"} 作用:指定要绘制的类型 color : matplotlib color height : 数字 作用:指定图的大小(图是正方形的) ratio:数字 作用:指定主轴(x,y轴)与边缘轴...(正方形四边除x,y轴外的其它轴)高度的比率 space:数字 作用:指定主轴与边缘轴之间的空间 dropna : bool 作用:如果为True,则删除x和y中缺少的观测值 案例教程 import...,边缘为直方图:联合直方图 """ sns.jointplot(x="total_bill", y="tip", data=tips) plt.show() [ydqmhll1jl.png] import...=True) """ 案例6: 随机生成300个(x,y)二维数据,并指定x,y轴 """ x, y = np.random.randn(2, 300) (sns.jointplot(x, y, kind

    6.1K00

    你知道怎么用Pandas绘制带交互的可视化图表吗?

    之前咱们介绍过Pandas可视化图表的绘制《『数据可视化』一文掌握Pandas可视化图表》,不过它是依托于matplotlib,因此无法进行交互。...figsize : 图的宽度和高度 title : 设置标题 xlim / ylim:为 x 和 y 轴设置可见的绘图范围(也适用于日期时间 x 轴) xlabel / ylabel : 设置 x 和...y 标签 logx / logy : 在 x/y 轴上设置对数刻度 xticks / yticks : 设置轴上的刻度 color:为绘图定义颜色 colormap:可用于指定要绘制的多种颜色 hovertool...y="苹果", # y的值,这里选择的是df数据中的苹果列 title="苹果", # 标题 xlabel="Date", # x轴标题 ylabel="Stock price...直方图 在绘制直方图时,有不少参数可供选择: bins:确定用于直方图的 bin,如果 bins 是 int,则它定义给定范围内的等宽 bin 数量(默认为 10),如果 bins 是一个序列,它定义了

    4.8K30

    Pandas知识点-绘制统计图

    使用matplotlib可以绘制各种各样的统计图,Pandas对matplotlib中的绘图方法进行了更高层的封装,使用起来更简单方便。...需要注意的是,在Pandas中,scatter不支持Series对象,只支持DataFrame对象,所以不能用Series对象绘制散点图。...绘制散点图时,通过x参数和y参数指定散点图的x轴数据和y轴数据。x和y都是DataFrame中的列标签,绘图时会根据列标签读取对应列的数据。 s: 使用s参数设置散点图中点的大小。...在Pandas中,绘制图形除了在plot()中指定kind参数外,还可以通过plot链式调用对应的方法,如plot.scatter()表示绘制散点图,后面绘制柱状图、直方图、饼图等也可以用链式调用的方式...当然,在设置x轴刻度值,y轴刻度值,数值标签等时要注意方向的转换。 六、绘制直方图 使用plot链式调用hist()方法,或在plot()中设置kind为hist,都可以绘制直方图。

    4.6K20

    五分钟入门数据可视化

    在 Matplotlib 中,我们可以直接使用 plt.plot() 函数,当然需要提前把数据按照 x 轴的大小进行排序,要不画出来的折线图就无法按照 x 轴递增的顺序展示。...seaborn 如果要修改X和Y轴的参数需要这样写代码 df中的参数名字和lineplot中的参数的一一对应的,同时lineplot中的year就是x轴的名字,money就是y轴的名字 df = pd.DataFrame...在 Matplotlib 中,我们使用 plt.bar(x, height) 函数,其中参数 x 代表 x 轴的位置序列,height 是 y 轴的数值序列,也就是柱子的高度。...在 Matplotlib 中,我们使用 plt.boxplot(x, labels=None) 函数,其中参数 x 代表要绘制箱线图的数据,labels 是缺省值,可以为箱线图添加标签。...在 Matplotlib 中,我们使用 plt.pie(x, labels=None) 函数,其中参数 x 代表要绘制饼图的数据,labels 是缺省值,可以为饼图添加标签。

    3.4K30

    一文掌握Pandas可视化图表

    今天简单介绍一下Pandas可视化图表的一些操作,Pandas其实提供了一个绘图方法plot(),可以很方便的将Series和Dataframe类型数据直接进行数据可视化。 1....数据源选择 这里是指坐标轴的x、y轴数据,对于Series类型数据来说其索引就是x轴,y轴则是具体的值;对于Dataframe类型数据来说,其索引同样是x轴的值,y轴默认为全部,不过可以进行指定选择。...'A') 我们还可以指定x轴和多列为y,我这里先构建一列X,然后进行数据源选取 df["X"] = list(range(len(df))) df.head() 选择X列为x轴,B、C列为y轴数据...横向展示 # 可以通过orientation='horizontal'和 cumulative=True 绘制横向和累积直方图 df["a"].plot.hist(orientation="horizontal...其他图表类型 在常见图表中,有密度图和六边形箱型图 绘制过程报错,暂时没有解决(本机环境:pandas1.3.1) 本节主要介绍散点矩形图、安德鲁曲线等,更多资料大家可以查阅官方文档了解 https:/

    9.4K50

    python 数据分析基础 day14-matplotlib模块概括条形图直方图折线图散点图箱线图

    模块概括 matplotlib 是最基础的绘图模块,pandas和seaborn的绘图功能的使用依赖于matplotlib。...] #创建基础图 fig=plt.figure() #在基础图上仅绘制一个图,括号中的三个参数代表基础图中的统计图布局,参数一次代表:图的行数量、图的列数量、第几个图。...bar1.bar(x,y,align='center',color="grey") #设置基础图形中某个统计图(这里指柱形图)的坐标轴位置 bar1.xaxis.set_ticks_position(...柱形图.png 直方图 #绘制直方图 from matplotlib import pyplot as plt import numpy as np #设置数据:两组正态分布的数据 mu1, mu2...直方图.png 折线图 #绘制折线图 from matplotlib import pyplot as plt #设置绘图数据 x=[1,2,3,4,5] y=[10.2,13.0,15.1,15.2,16.2

    2K40

    一篇文章带你搞定Pandas绘图API

    ,x、y分别指定下,x、y轴的序列; tight_layout() 使得整个图紧凑显示,不然x轴的文字由于太长会被挡住; 结果如下所示: 分组柱图 首先我们还是查看数据文件:students02.xlsx...,x、y分别指定下,x、y轴的序列,但是由于分组柱图y轴不再是一个序列,而是由两个(或多个)序列组成的列表; plt.title() 设置标题,当然也可以在bar() 函数里面设置; plt.gca()...获得x轴的文字,下一列重新设置x轴的文字,并且把文字旋转45°,ha='right':依照右点为中心进行水平对齐; plt.gcf() 拿到绘制的图形对象,设置留白区域,left=0.2(左侧留白20%...() 结果如下: 该图形绘制的是在某地区房子价位与房子面积的分布关系; 直方图 import matplotlib.pyplot as plt import pandas as pd data...总结 以上就是使用pandas结合matplotlib绘制一些基本常用图形的例子,当然了例子是固定的,图形是灵活的,我们还是要根据不同的数据表,结合不同的现实状况,绘制不同的图形达到我们的目的。

    1.1K10

    数据可视化:认识Matplotlib

    Matplotlib的官网地址为https://matplotlib.org/,这里有权威的官网资料,同样与numpy和pandas一样,文档是英文的表达,对读者有一定的能力要求。...轴标签 plt.xlabel("x轴") #设置y轴标签 plt.ylabel("y轴") #绘制折线图 plt.plot(x, y) #将折线图显示 plt.show() 代码运行结果会生成y=2x的坐标图...绘制折线图方法plt.plot(x,y,format_string,**kwargs) x:x轴数据,列表或数组,可选 y:y轴数据,列表或数组 format_string:控制曲线的格式字符串,可选,..."y轴") plt.scatter(x, y, color='r', marker='*') plt.show() 代码运行结果会生成x轴和y轴指定点的坐标图,如图所示。...在hist()方法中参数含义如下: data:必选参数,绘图数据 bins:直方图的长条形数目,默认为10,为了更加明显地看出正态分布,可以设置大一些。

    1.1K20

    数据可视化干货:使用pandas和seaborn制作炫酷图表(附代码)

    你可以从其基本组件中组装一个图表:数据显示(即绘图的类型:线、条、框、散点图、轮廓等)、图例、标题、刻度标记和其他注释。 在pandas中,我们可能有多个数据列,并且带有行和列的标签。...x轴的刻度和范围可以通过xticks和xlim选项进行调整,相应地y轴使用yticks和ylim进行调整。表9-3是plot的全部选项列表。本节我会介绍这些选项中的一些,其余你可以自行探索。...use_index 使用对象索引刻度标签 rot 刻度标签的旋转(0到360) xticks 用于x轴刻度的值 yticks 用于y轴 xlim x轴范围(例如[0,10]) ylim y轴范围 grid...参数 描述 subplots 将DataFrame的每一列绘制在独立的子图中 sharex 如果subplots=True,则共享相同的x轴、刻度和范围 sharey 如果subplots=True,则共享相同的...在绘制柱状图时,Series或DataFrame的索引将会被用作x轴刻度(bar)或y轴刻度(barh)(参考图9-15): In [64]: fig, axes = plt.subplots(2, 1

    6.9K40

    十七.可视化分析之Matplotlib、Pandas、Echarts入门万字详解

    文章目录: 一.Matplotlib可视化分析 1.绘制曲线图 2.绘制散点图 3.绘制柱状图 4.绘制饼图 5.绘制3D图形 二.Pandas读取文件可视化分析 1.绘制折线对比图 2.绘制柱状图和直方图...从给出的一堆随机点(包含x、y坐标)中调用scatter()绘制散点图,代码如下。...代码中调用np.random.rand(90,2)函数随机成才90个二维数组,分别对应90个点,其中x[indx1,0]表示获取第一维坐标作x轴,x[indx1,1]表示获取第二维坐标作y轴。...---- 2.绘制柱状图和直方图 下面针对贵阳的商品房房价数据集进行柱状图绘制,调用Pandas提供的plot()函数。...直方图的Y轴是频率,柱形图的Y轴可以是数值。 直方图是一种展示数据频数或频率的特殊柱状图,y 轴是频数或频率的度量,既可以是频数(计数)也可以是频率(占比)。

    3K30

    Matplotlib引领数据图表绘制

    Matplotlib引领数据图表绘制 前言 在数据科学领域,数据可视化是一种强大的工具,能够将复杂的数据转化为易于理解和分析的图形。...图像得组成 下面张图片来自matplotlib官网,简单说明一下图片得组成; figure:画布,一张图片得整体轮廓 Axes:数轴,一张画布上可以画多张图片 axis:坐标轴,通常得x轴,y轴等 tick...matplotlib.pyplot as plt import numpy as np 设置 figure Matplotlib 绘制的图形都在一个默认的 figure 中,我们可以自己创建 figure...我们可以使用x和y关键字绘制一列与另一列。 绘图方法允许除默认线图之外的少数绘图样式。 这些方法可以作为plot()的kind关键字参数提供。...可以使用plot.hist()方法绘制直方图。

    96810

    想要使用Python进行数据分析,应该使用那些工具

    Matplotlib和SeabornMatplotlib是一个Python 2D绘图库,可以用于创建各种图形,如线图、散点图、多边形、条形图、直方图、图像等。...示例代码:import matplotlib.pyplot as pltimport seaborn as sns# 绘制一行两列的坐标轴图表fig, axes = plt.subplots(nrows...=1, ncols=2, figsize=(10, 5))# 在第1个坐标轴中绘制一个直方图sns.histplot(data, x='age', kde=True, ax=axes[0])# 在第2个坐标轴中绘制一个散点图...Income', xlabel='Age', ylabel='Income')plt.show()这个代码片段中我们使用了Matplotlib和Seaborn库,绘制了一行两列的坐标轴图表。...在第一个图表中,我们使用Seaborn的histplot()函数绘制了一个直方图,展示年龄的分布情况。

    58210

    『数据可视化』一文掌握Pandas可视化图表

    数据源选择 这里是指坐标轴的x、y轴数据,对于Series类型数据来说其索引就是x轴,y轴则是具体的值;对于Dataframe类型数据来说,其索引同样是x轴的值,y轴默认为全部,不过可以进行指定选择。...我们还可以指定x轴和多列为y,我这里先构建一列X,然后进行数据源选取 df["X"] = list(range(len(df))) df.head() ?...选择X列为x轴,B、C列为y轴数据 # 指定多个Y df.plot(x='X',y=['B','C']) ?...横向展示 # 可以通过orientation='horizontal'和 cumulative=True 绘制横向和累积直方图 df["a"].plot.hist(orientation="horizontal...其他图表类型 在常见图表中,有密度图和六边形箱型图 绘制过程报错,暂时没有解决(本机环境:pandas1.3.1) 本节主要介绍散点矩形图、安德鲁曲线等,更多资料大家可以查阅官方文档了解 https:/

    10.3K40

    Seaborn从零开始学习教程(三)

    绘制单变量分布 在 seaborn 中,快速观察单变量分布的最方便的方法就是使用 distplot() 函数。默认会使用直方图 (histogram) 来绘制,并提供一个适配的核密度估计(KDE)。...直方图(histograms) 直方图是比较常见的,并且在 matplotlib 中已经存在了 hist 函数。...直方图在横坐标的数据值范围内均等分的形成一定数量的数据段(bins),并在每个数据段内用矩形条(bars)显示y轴观察数量的方式,完成了对的数据分布的可视化展示。..., "y"]) Scatterplots 双变量分布最熟悉的可视化方法无疑是散点图了,在散点图中每个观察结果以x轴和y轴值所对应的点展示。...可视化数据集成对关系 为了绘制数据集中多个成对的双变量,你可以使用 pairplot() 函数。这创建了一个轴矩阵,并展示了在一个 DataFrame 中每对列的关系。

    2.3K10

    数据分析中的可视化-常见图形

    还可以指定subplots的其他参数,例如使得子图之间具有相同的x轴或者y轴(否则matplotlib会自动缩放各子图的坐标轴界限) (3)调整子图的间距 利用subplots_adjust函数可以调整各个子图之间的间距和图像大小...plt 2import numpy as np 3fig, axes = plt.subplots(2,2,sharex=True, sharey=True) # 子图为2行2列,设置子图具有相同的x轴和...image.png 数据分析中的常用图形: 线型图: 除了matplotlib, pandas的Series和DataFrame都具有许多根据其自身数据组织特点来创建标准绘图的高级绘图方法。...image.png 柱形图: 柱状图绘制的是x坐标对应的y取值,在plot代码中加入kind=‘bar’就可以得到垂直柱状图,‘barh’则是水平柱状图。...数据点被分割到离散的,间隔均匀的面元中,绘制的是各个面元中数据点的数量。其中参数bins表示面元的单位,可以用normed设置是否进行归一化。 密度图: 密度图经常和直方图绘制在一起。

    1.7K20
    领券