原文标题:How to Create a Linux Virtual Machine For Machine Learning Development With Python 3 作者:Jason Brownlee 翻译:杨金鸿 翻译校对:白静 文字校对:丁楠雅 本文长度为3000字,建议阅读8分钟 本文主要内容包括Linux虚拟机的优点、安装教程以及使用VM的技巧。 Linux是使用Python进行机器学习开发的极佳环境。这些工具能够被简便快捷地安装,并且您可以直接开发和运行大型模型。 在本教程中,您
但在开始之前,先来看看一个最简单的使用 TensorFlow Python API 的示例代码,这样你就会对我们接下来要做的事情有所了解。
你可以通过终端窗口输入 "python" 命令来查看本地是否已经安装Python以及Python的安装版本。
Python黑帽编程1.3 Python运行时与包管理工具 0.1 本系列教程说明 本系列教程,采用的大纲母本为《Understanding Network Hacks Attack and Defense with Python》一书,为了解决很多同学对英文书的恐惧,解决看书之后实战过程中遇到的问题而作。由于原书很多地方过于简略,笔者根据实际测试情况和最新的技术发展对内容做了大量的变更,当然最重要的是个人偏好。教程同时提供图文和视频教程两种方式,供不同喜好的同学选择。 0.2 前言 前两节里,我们完成
许多开发人员编写了他们自己的模块,将 Python 的功能扩展到了与 Python 打包在一起的标准模块库之外。安装第三方模块的主要方法是使用 Python 的 PIP 工具。该工具从 Python 软件基金会的网站pypi.python.org/安全地下载 Python 模块并安装到您的计算机上。PyPI,或者 Python 包索引,是一种免费的 Python 模块应用商店。
首先访问http://www.python.org/download/去下载需要的python版本。我使用的是python2.7.5版本
本次将向大家介绍如何在本地搭建Python开发环境。 Python可应用于多平台包括 Linux 和 Mac OS X。 你可以通过终端窗口输入 "python" 命令来查看本地是否已经安装Python以及Python的安装版本。 Unix (Solaris, Linux, FreeBSD, AIX, HP/UX, SunOS, IRIX, 等等。) Win 9x/NT/2000 Macintosh (Intel, PPC, 68K) OS/2 DOS (多个DOS版本) PalmOS Nokia 移动手
1、Anaconda简介2、Anaconda安装(Linux和Windows)3、Conda的包管理与环境管理
查看系统中的python版本,如系统中没有python可以到 python.org 网站下载python,支持linux、windows、macos系统。下文可以看到系统已经安装过了python2.7版本。
TensorFlow简介 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。 TensorFlow可被用于语音识别或图像识别等多项机器深度学习领域,对2011年开发的深度学习基础架构DistBelief进行了各方面的改进,它可在
Python3 环境搭建 本章节我们将向大家介绍如何在本地搭建 Python3 开发环境。
我个人在尝试在我的Linux和Windows机器上安装Python时曾遇到过各种各样的问题。一般在出问题之前安装总是很顺利。出了问题之后要么是兼容性问题,要么是关于某种依赖性缺失的问题。
我们建议在生成 web 应用程序时在 WSL 上安装 Python。 Python web 开发的许多教程和说明都是针对 Linux 用户编写的, 并使用基于 Linux 的打包和安装工具。 大多数 web 应用还部署在 Linux 上, 因此, 这将确保你的开发环境与生产环境之间的一致性。
Python是著名的“龟叔”Guido van Rossum在1989年圣诞节期间,为了打发无聊的圣诞节而编写的一个编程语言,Python官方网站 。
1. 首先去官网 https://www.python.org/downloads/source/下载 Gzipped source tarball
你可以通过终端窗口输入 “python” 命令来查看本地是否已经安装Python以及Python的安装版本。
Pyinotify 是一个简单而实用的 Python 模块,它用于通过 inotify 实时监控Linux文件系统的更改。用于在Linux中实时监控文件系统的变化。
配置Python环境变量是在安装Python解释器后的一项重要步骤,它允许您在任何位置都可以通过命令行或脚本运行Python解释器,使Python编程更加便捷和灵活。在本文中,我们将介绍如何配置Python环境变量,以便您能够充分发挥Python的优势。
想象一下,你用 Linux 版本的 Tensorflow 建立了一个美妙的 RNN 模型,然后无缝切换到 Windows 用 Excel 直接编辑结果,画了一幅 fancy 的图给你的老板。在此期间,你的所有模型文件已经被自动同步到了 Onedrive/百度云/Dropbox 上了!整个过程丝毫没有使用虚拟机的“膈应”感!
在RedHat Enterprise Linux 8中,Python没有预先安装。 主要原因是RHEL 8开发人员不想为用户设置默认的Python版本。 因此,作为RHEL用户,您需要通过安装来指定是否需要Python 3或2。 此外,在RHEL中,Python 3.6是Python的默认和完全支持的版本。 但是,Python 2仍然可用,您可以安装它。
本文介绍了如何在 Ubuntu 14.04 下安装 TensorFlow,包括使用 Anaconda、使用 pip 以及在 Mac 系统中安装的方法。通过这些方法,你可以创建一个具有 TensorFlow 的环境并快速运行一个手写数字识别的示例。
Python(英语发音:/ˈpaɪθən/), 是一种面向对象、解释型计算机程序设计语言,由Guido van Rossum于1989年底发明,第一个公开发行版发行于1991年,Python 源代码同样遵循 GPL(GNU General Public License)协议[1] 。Python语法简洁而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中有特别要求的部分,用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C/C++重写,而后封装为Python可以调用的扩展类库。需要注意的是在您使用扩展类库时可能需要考虑平台问题,某些可能不提供跨平台的实现。
初始化 为什么要选择Python? Python作为目前Linux系统下最流行的编程语言之一,对于安全工作者的作用可以和C++相提并论。Python提供了丰富的库供调用,丰富的第三方扩展模块。在网络应用,文本解析方面,Python编程有着其他语言无可比拟的优势。同时Python也是面向对象并且跨平台的语言,可以在linux/Unix、OSX、windows上无障碍运行。 1.1 查看PYTHON版本信息 Kali Linux默认已经安装了Python运行环境,运行下面的命令,可以查看当前Python版本。
网上关于python的交叉编译的文章很多,但是关于python第三库的交叉编译的文章就比较少了,而且很多标题是第三方库的交叉编译,但是实际上用到的都是不需要交叉编译就能用的库,可参考性不强,最近关于python及其第三方库的交叉编译也踩了不少坑,记录一下!
因为ReviewBoard在Windows上停止更新了,所以了解如何在Linux系统安装ReviewBoard是很有必要的。笔者只在Apache+MySQL+Ubuntu下实现过,其余均参考官方安装文档:http://www.reviewboard.org/docs/manual/dev/admin/installation/linux/。 [Note] 安装过程中如碰到报错问题,自行谷歌或者百度,大部分均可解决。有些是软件版本问题,比如之前用Ubuntu 12.04有个软件包用easy_install安装的版本一直低于安装ReviewBoard的要求,升级成Ubuntu 13.04之后就没问题了。
现如今,Python的应用愈来愈广泛,且对于常用的发行版Linux操作系统来说一般都会预装Python环境,这给Python学习者带来了福音,因为在Windows操作系统上安装Python环境还需要配置各种环境变量。但是Linux环境下也会存在一些问题,比如Linux系统默认的Python版本一般为2.7,而如今的发行版已经到了3.9,因此能够在操作系统上简单地完成不同Python发行版的的切换十分必要。本文主要介绍一种以Ubuntu为例在Linux上的使用conda对Python版本进行控制的方法。
Python作为一门跨平台语言,能够在不同的操作系统上很好的运行。当前主流计算机的操作系统有Windows,Mac OS,Linux三种,而在不同操作系统上安装Pyhton环境会有些许不同。 选择Python版本: Python目前有两个版本,一个是2.x版本,一个是3.x版本,两个版本互不兼容。但由于3.x版本越来越流行,所以我们都应该选择3.x版本进行安装。 一、Windows安装Python Windows操作系统并没有内置Python环境,需要独立安装。 1.下载Python 进入Python官网
linux系统环境自带python2.6,但有时我们项目使用的版本可能是3.x以上等等,此时我们需要在linux中再安装项目所需的python版本,此时就涉及多版本共存问题了,很多同学在安装多个版本Python时会遇到各种问题,本篇文章针对python多版本共存做了详细安装说明
Linux下默认系统自带Python2.X的版本,这个版本被系统很多程序所依赖,所以不建议删除,如果使用最新的Python3那么我们知道编译安装源码包和系统默认包之间是没有任何影响的,所以可以安装Python3和Python2共存。
原来是没有gcc,我这里是新安装的Linux,所以我需要安装gcc,安装命令如下:
在日常工作学习生活中,我们常见的系统有三种:Windows、Mac、Linux。而Linux常见的有Redhat、Ubuntu、Centos。
CentOS 克隆自 RHEL,无需付费即可使用。CentOS 是一个企业级标准的、前沿的操作系统,被超过 90% 的网络主机托管商采用,因为它提供了技术领先的服务器控制面板 cPanel/WHM。
从你开始学习编程的那一刻起,就注定了以后所要走的路—从编程学习者开始,依次经历实习生、程序员、软件工程师、架构师、CTO等职位的磨砺;当你站在职位顶峰的位置蓦然回首时,会发现自己的成功并不是偶然,在程序员的成长之路上会有不断修改代码、寻找并解决Bug、不停测试程序和修改项目的经历。
如何在一个 U 盘上安装多个 Linux 发行版,这样你可以在单个 U 盘上享受多个现场版Linux 发行版了。
配置深度学习主机与环境(TensorFlow+1080Ti): 01 概念介绍 Anaconda Anaconda(https://www.continuum.io/why-anaconda)是一个用于科学计算的Python发行版,支持 Linux, Mac, Windows系统,提供了包管理与环境管理的功能,可以很方便地解决多版本python并存、切换以及各种第三方包安装问题。Anaconda利用工具/命令conda来进行package和environment的管理,并且已经包含了Python和相关的
将此whl文件下载成功后,放置于目录:D:\python\python3.6.2\Scripts下【这个是我本地python安装目录,大家在实际操作过程中,替换为自己本地python的安装目录即可】
将此whl文件下载成功后,放置于目录:D:\python\python3.6.2\Scripts下
Anaconda 是一个包含数据科学常用包的发行版本。它基于 conda(一个包和环境管理器) 衍生而来。应用程序 conda 是包和环境管理器:
Linux操作系统为32位的 要下载armv7结尾的.sh文件,但是Miniconda对armv7的支持版本已经很古老了,在创建虚拟环境Python3.7以上貌似都会出现问题,勉强支持到Python3.4版本左右,而且官方的作者对armv7结尾的.sh文件已经停更很久了,不建议安装使用,推荐树莓派安装64位的Linux。
在撸胳膊挽袖子准备大干一场之前,我们得对Python以及Python的编码规则要有一定了解,这样才不至于让我们写出不正确或者不够高效的Python代码来。
pygame是一组功能强大而有趣的模块,可用于管理图形、动画乃至声音,可以轻松的开发复杂的游戏。使用pygame来处理在屏幕上绘制图像等任务,就不用考虑众多繁琐而艰难的编码工作,而可以将重点放在程序的高级逻辑上。 但是在安装pygame时,却遇到比较苦恼的事情,就是有很多版本该怎么选择一个适合电脑系统的版本呢?并且有pygame有众多的版本,版本的名称一大串,都代表什么意思呢?刚刚接触确实是一脸萌萌的,接下来就简要的介绍两种系统的安装吧,windowns和linux:
教程地址:https://docs.microsoft.com/zh-cn/windows/python/
5 make make altinstall //此处不能用install安装,因为install不区分版本,会出现多版本混乱的问题
在使用 Python 的早些年,为了解决 Python 包的隔离与管理 virtualenvwrapper 就成为我的工具箱中重要的一员。后来,随着 Python 3 的普及,virtualenvwrapper 逐渐被 venv 所替换。毕竟 venv 是 Python 3 的标配,优点是显而易见的。而这几年,应用场景的的复杂性越来与高,无论是开发还是部署都需要设置复杂的环境。例如使用 redis 实现消息队列,用 Psycopg 完成对于 PostgreSQL 数据库的存取等等。随之而来 Docker 就变成了程序员必不可少的常备工具。为了掌握如何将我的 Python 应用与 Docker 结合起来,就要学习他人的经验分享。于是一次又一次地看到了下面这样的 Dockerfile 例子:
由于人们用Python所做的事情不同,所以没有一个普适的Python及其插件包的安装方案。由于许多读者的Python科学计算环境都不能完全满足本系列的需要,所以接下来我将详细介绍各个操作系统上的安装方法。我推荐免费的Anaconda安装包。写作本系列时,Anaconda提供Python 2.7和3.6两个版本,以后可能发生变化。本系列使用的是Python 3.6,因此推荐选择Python 3.6或更高版本。
Python是一个跨平台、可移植的编程语言,因此可在windows、Linux和Mac OS X系统中安装使用。
Python易用,但用好却不易,其中比较头疼的就是包管理和Python不同版本的问题,特别是当你使用Windows的时候。为了解决这些问题,有不少发行版的Python,比如WinPython、Anaconda等,这些发行版将python和许多常用的package打包,方便pythoners直接使用,此外,还有virtualenv、pyenv等工具管理虚拟环境。
领取专属 10元无门槛券
手把手带您无忧上云